Adolescent idiopathic scoliosis (AIS) is characterized by the radiographic presence of a frontal plane curve, with a magnitude greater than 10° (Cobb technique). Diffusion MRI can be employed to assess the cerebral white matter. The aim of this study was to analyze, by means of MRI, the presence of any alteration in the connectivity of cerebral white matter in AIS patients.
View Article and Find Full Text PDFMagnetic resonance is an imaging modality that implies a high complexity for radiographers. Despite some simulators having been developed for training purposes, we are not aware of any attempt to quantitatively measure their educational performance. The present study gives an answer to the question: Does an MRI simulator built on specific functional and non-functional requirements help radiographers learn MRI theoretical and practical concepts better than traditional educational method based on lectures? Our study was carried out in a single day by a total of 60 students of a main hospital in Madrid, Spain.
View Article and Find Full Text PDFBackground And Objective: In this paper we propose to include an intelligent tutoring system (ITS) within a magnetic resonance (MR) simulator that has been developed in house. With this, we intend to measure the impact, in terms of user experience, of including an ITS in our simulator.
Methods: We thoroughly describe the integration procedure and we have tested the benefits of this integration by means of two actual educational experiences, with one of them using the simulator as a standalone tool, and the other with the joint use of simulator+ITS.
In the last decade, the clinical applications of three-dimensional (3D) printed models, in the neurosurgery field among others, have expanded widely based on several technical improvements in 3D printers, an increased variety of materials, but especially in postprocessing software. More commonly, physical models are obtained from a unique imaging technique with potential utilization in presurgical planning, generation/creation of patient-specific surgical material and personalized prosthesis or implants. Using specific software solutions, it is possible to obtain a more accurate segmentation of different anatomical and pathological structures and a more precise registration between different medical image sources allowing generating hybrid computed tomography (CT) and magnetic resonance imaging (MRI) 3D printed models.
View Article and Find Full Text PDFA new web-based education-oriented magnetic resonance (MR) simulator is presented. We have identified the main requirements that this simulator should comply with, so that trainees can face useful practical tasks such as setting the exact slice position and its properties, selecting the correct protocol or fitting the parameters to acquire an image. The tool follows the client-server model.
View Article and Find Full Text PDF