Here we revisit tau protein aggregation at primary, secondary, tertiary and quaternary structures. In addition, the presence of non-aggregated tau protein, which has been recently discovered, is also commented on.
View Article and Find Full Text PDFColchicine has been used to treat gout and, more recently, to effectively prevent autoinflammatory diseases and both primary and recurrent episodes of pericarditis. The anti-inflammatory action of colchicine seems to result from irreversible inhibition of tubulin polymerization and microtubule (MT) assembly by binding to the tubulin heterodimer, avoiding the signal transduction required to the activation of the entire NLRP3 inflammasome. Emerging results show that the MT network is a potential regulator of cardiac mechanics.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by the presence of two aberrant structures: namely senile plaques, composed of amyloid-β peptide (Aβ), and neurofibrillary tangles, composed of tau protein. In this regard, Aβ and tau protein have been widely studied in research efforts aiming to find a therapy for AD. Aβ and tau pathologies do not always overlap.
View Article and Find Full Text PDFTau is a microtubule-associated protein that plays an important role in axonal stabilization, neuronal development, and neuronal polarity. In this review, we focus on the primary, secondary, tertiary, and quaternary tau structures. We describe the structure of tau from its specific residues until its conformation in dimers, oligomers, and larger polymers in physiological and pathological situations.
View Article and Find Full Text PDFTubulin proteostasis is regulated by a group of molecular chaperones termed tubulin cofactors (TBC). Whereas tubulin heterodimer formation is well-characterized biochemically, its dissociation pathway is not clearly understood. Here, we carried out biochemical assays to dissect the role of the human TBCE and TBCB chaperones in α-tubulin-β-tubulin dissociation.
View Article and Find Full Text PDFEukaryotic ectotherms of the Southern Ocean face energetic challenges to protein folding assisted by the cytosolic chaperonin CCT. We hypothesize that CCT and its client proteins (CPs) have co-evolved molecular adaptations that facilitate CCT-CP interaction and the ATP-driven folding cycle at low temperature. To test this hypothesis, we compared the functional and structural properties of CCT-CP systems from testis tissues of an Antarctic fish, Gobionotothen gibberifrons (Lönnberg) (habitat/body T = -1.
View Article and Find Full Text PDFTubulin cofactors (TBCs) participate in the folding, dimerization, and dissociation pathways of the tubulin dimer. Among them, TBCB and TBCE are two CAP-Gly domain-containing proteins that together efficiently interact with and dissociate the tubulin dimer. In the study reported here we showed that TBCB localizes at spindle and midzone microtubules during mitosis.
View Article and Find Full Text PDFBackground: Recently, long noncoding RNAs have emerged as pivotal molecules for the regulation of coding genes' expression. These molecules might result from antisense transcription of functional genes originating natural antisense transcripts (NATs) or from transcriptional active pseudogenes. TBCA interacts with β-tubulin and is involved in the folding and dimerization of new tubulin heterodimers, the building blocks of microtubules.
View Article and Find Full Text PDFHuman Tubulin Binding Cofactor C (TBCC) is a post-chaperonin involved in the folding and assembly of α- and β-tubulin monomers leading to the release of productive tubulin heterodimers ready to polymerize into microtubules. In this process it collaborates with other cofactors (TBC's A, B, D, and E) and forms a supercomplex with TBCD, β-tubulin, TBCE and α-tubulin. Here, we demonstrate that TBCC depletion results in multipolar spindles and mitotic failure.
View Article and Find Full Text PDFDespite its fundamental role in centrosome biology, procentriole formation, both in the canonical and in the de novo replication pathways, remains poorly understood, and the molecular components that are involved in human cells are not well established. We found that one of the tubulin cofactors, TBCD, is localized at centrosomes and the midbody, and is required for spindle organization, cell abscission, centriole formation and ciliogenesis. Our studies have established a molecular link between the centriole and the midbody, demonstrating that this cofactor is also necessary for microtubule retraction during cell abscission.
View Article and Find Full Text PDFIn animal cells the centrosome is positioned at the cell centre in close association with the nucleus. The mechanisms responsible for this are not completely understood. Here, we report the first characterization of human TBCC-domain containing 1 (TBCCD1), a protein related to tubulin cofactor C.
View Article and Find Full Text PDFMicrotubule-organizing centers recruit alpha- and beta-tubulin polypeptides for microtubule nucleation. Tubulin synthesis is complex, requiring five specific cofactors, designated tubulin cofactors (TBCs) A-E, which contribute to various aspects of microtubule dynamics in vivo. Here, we show that tubulin cofactor D (TBCD) is concentrated at the centrosome and midbody, where it participates in centriologenesis, spindle organization, and cell abscission.
View Article and Find Full Text PDFMicrotubules are polymers of alpha/beta-tubulin participating in essential cell functions. A multistep process involving distinct molecular chaperones and cofactors produces new tubulin heterodimers competent to polymerise. In vitro cofactor A (TBCA) interacts with beta-tubulin in a quasi-native state behaving as a molecular chaperone.
View Article and Find Full Text PDFTau is the main component of the paired helical filaments (PHFs), aberrant structures that develop in the brain of Alzheimer's disease (AD) patients and other tauopathies like frontotemporal dementia and parkinsonism associated to chromosome 17 (FTDP-17). Previous work has shown that tau overexpression in Sf9 insect cells results in the formation of long cytoplasmatic extensions as a consequence of microtubule stabilization and bundling. Throughout this work, we have taken studies in this system further by overexpression of an altered form of tau characteristic of FTDP-17, which includes three mutations (G272V, P301L and R406W) and biochemically behaves as a hyperphosphorylated form of the protein, with the aim of developing an in vitro model which would favour the formation of tau aggregates.
View Article and Find Full Text PDFalpha and beta-Tubulin fold in a series of chaperone-assisted steps. At least five protein cofactors are involved in the post-chaperonin tubulin folding pathway and required to maintain the supply of tubulin; some of them also participate in microtubule dynamics. The first tubulin chaperone identified in the tubulin folding pathway was cofactor A (CoA).
View Article and Find Full Text PDF