Publications by authors named "Juan C Ocampo-Ramos"

In nuclear medicine, estimating the number of radioactive decays that occur in a source organ per unit administered activity of a radiopharmaceutical (i.e., the time-integrated activity coefficient [TIAC]) is an essential task within the internal dosimetry workflow.

View Article and Find Full Text PDF

Y-microsphere radioembolization has become a well-established treatment option for liver malignancies and is one of the first U.S. Food and Drug Administration-approved unsealed radionuclide brachytherapy devices to incorporate dosimetry-based treatment planning.

View Article and Find Full Text PDF

Background: Potential risk associated with low-dose radiation exposures is often expressed using the effective dose (E) quantity. Other risk-related quantities have been proposed as alternatives. The recently introduced risk index (RI) shares similarities with E but expands the metric to incorporate medical imaging-appropriate risks factors including patient-specific size, age, and sex.

View Article and Find Full Text PDF

Medical internal radiation dosimetry constitutes a fundamental aspect of diagnosis, treatment, optimization, and safety in nuclear medicine. The MIRD committee of the Society of Nuclear Medicine and Medical Imaging developed a new computational tool to support organ-level and suborgan tissue dosimetry (MIRDcalc, version 1). Based on a standard Excel spreadsheet platform, MIRDcalc provides enhanced capabilities to facilitate radiopharmaceutical internal dosimetry.

View Article and Find Full Text PDF

Radiopharmaceutical dosimetry is usually estimated via organ-level MIRD schema-style formalisms, which form the computational basis for commonly used clinical and research dosimetry software. Recently, MIRDcalc internal dosimetry software was developed to provide a freely available organ-level dosimetry solution that incorporates up-to-date models of human anatomy, addresses uncertainty in radiopharmaceutical biokinetics and patient organ masses, and offers a 1-screen user interface as well as quality assurance tools. The present work describes the validation of MIRDcalc and, secondarily, provides a compendium of radiopharmaceutical dose coefficients obtained with MIRDcalc.

View Article and Find Full Text PDF

In radiopharmaceutical therapy, dosimetry-based treatment planning and response evaluation require accurate estimates of tumor-absorbed dose. Tumor dose estimates are routinely derived using simplistic spherical models, despite the well-established influence of tumor geometry on the dosimetry. Moreover, the degree of disease invasiveness correlates with departure from ideal geometry; malignant lesions often possess lobular, spiculated, or otherwise irregular margins in contrast to the commonly regular or smooth contours characteristic of benign lesions.

View Article and Find Full Text PDF

Purpose: Ra-223 dichloride (Ra, Xofigo®) is used for treatment of patients suffering from castration-resistant metastatic prostate cancer. The objective of this work was to apply the most recent biokinetic model for radium and its progeny to show their radiopharmacokinetic behaviour. Organ absorbed doses after intravenous injection of Ra were estimated and compared to clinical data and data of an earlier modelling study.

View Article and Find Full Text PDF

Purpose: The aim of this study was to quantitatively compare five commercial dosimetric software platforms based on the analysis of clinical datasets of patients who benefited from peptide receptor radionuclide therapy (PRRT) with Lu-DOTATATE (LUTATHERA ).

Methods: The dosimetric analysis was performed on two patients during two cycles of PRRT with Lu. Single photon emission computed tomography/computed tomography images were acquired at 4, 24, 72, and 192 h post injection.

View Article and Find Full Text PDF