Tropical infectious diseases inflict an unacceptable burden of disease on humans living in developing countries. Although anti-pathogenic drugs have been widely used, they carry a constant threat of selecting for resistance. Vaccines offer a promising means by which to enhance the global control of tropical infectious diseases; however, these have been difficult to develop, mostly because of the complex nature of the pathogen lifecycles.
View Article and Find Full Text PDFBackground: Research on mosquito-microbe interactions may lead to new tools for mosquito and mosquito-borne disease control. To date, such research has largely utilized laboratory-reared mosquitoes that typically lack the microbial diversity of wild populations. A logical progression in this area involves working under controlled settings using field-collected mosquitoes or, in most cases, their progeny.
View Article and Find Full Text PDFBackground: Insecticide-treated bed nets (ITNs) are widely used for the prevention and control of malaria. In Guatemala, since 2006, ITNs have been distributed free of charge in the highest risk malaria-endemic areas and constitute one of the primary vector control measures in the country. Despite relying on ITNs for almost 15 years, there is a lack of data to inform the timely replacement of ITNs whose effectiveness becomes diminished by routine use.
View Article and Find Full Text PDFAedes aegypti (Linnaeus, 1762) is considered the most important mosquito vector species for several arboviruses (e.g., dengue, chikungunya, Zika) in Costa Rica.
View Article and Find Full Text PDFBackground: Malaria remains an important public health problem in Latin America, and the development of insecticide resistance in malaria vectors poses a major threat to malaria elimination efforts. Monitoring of insecticide susceptibility and the determination of the mechanisms involved in insecticide resistance are needed to effectively guide the deployment of appropriate vector control measures. Here, molecular assays have been developed to screen for mutations associated with insecticide resistance on the voltage-gated sodium channel (VGSC) and acetylcholinesterase-1 (Ace-1) genes in four malaria vectors from Latin America.
View Article and Find Full Text PDFA deeper understanding of the mechanisms underlying insecticide resistance is needed to mitigate its threat to malaria vector control. Following previously identified associations between mosquito microbiota and insecticide resistance, we demonstrate for the first time, the effects of pyrethroid exposure on the microbiota of F progeny of field-collected Anopheles albimanus. Larval and adult mosquitoes were exposed to the pyrethroids alphacypermethrin (only adults), permethrin, and deltamethrin.
View Article and Find Full Text PDFDecades of unmanaged insecticide use and routine exposure to agrochemicals have left many populations of malaria vectors in the Americas resistant to multiple classes of insecticides, including pyrethroids. The molecular basis of pyrethroid resistance is relatively uncharacterised in American malaria vectors, preventing the design of suitable resistance management strategies. Using whole transcriptome sequencing, we characterized the mechanisms of pyrethroid resistance in Anopheles albimanus from Peru and Guatemala.
View Article and Find Full Text PDFBackground: Anopheles albimanus is a key malaria vector in the northern neotropics. Current vector control measures in the region are based on mass distributions of long-lasting insecticidal nets (LLINs) and focal indoor residual spraying (IRS) with pyrethroids. Resistance to pyrethroid insecticides can be mediated by increased esterase and/or multi-function oxidase activity and/or mutations in the voltage-gated sodium channel gene.
View Article and Find Full Text PDF