Thioredoxins (TRX) are traditionally considered as enzymes catalyzing redox reactions. However, redox-independent functions of thioredoxins have been described in different organisms, although the underlying molecular mechanisms are yet unknown. We report here the characterization of the first generated endogenous redox-inactive thioredoxin in an animal model, the TRX-1 in the nematode Caenorhabditis elegans.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
June 2019
The production of methane from the reaction between CO₂ and H₂ (CO₂ methanation) has gained increasing attention in recent years. The rational design of novel catalytic materials for this reaction will depend on the fundamental description of the active sites and the identification of surface reaction intermediates. Currently, there is a debate regarding the mechanism for the CO₂ methanation on supported metals, with apparently contradictory proposals suggesting that various surface species could be either reaction intermediates or spectators.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2017
Despite of the importance of copper (Cu) during pregnancy, the roles of Cu-binding proteins during early embryonic development are unknown. The Cu chaperone ATOX1 was recently suggested to have additional functions related to transcription and cancer. When we analyzed single-cell RNA transcript data from early mouse embryos, Atox1 transcript levels increased dramatically at the 8-cell stage and, at 16- and 32-cell embryo stages, matched those of Oct4 which expresses a transcription factor essential for pluripotency in the inner cell mass.
View Article and Find Full Text PDFThe Caenorhabditis elegans oxidative stress response transcription factor, SKN-1, is essential for the maintenance of redox homeostasis and is a functional ortholog of the Nrf family of transcription factors. The numerous levels of regulation that govern these transcription factors underscore their importance. Here, we add a thioredoxin, encoded by trx-1, to the expansive list of SKN-1 regulators.
View Article and Find Full Text PDFEvery cell in our body originates from the pluripotent inner mass of the embryo, yet it is unknown how biomechanical forces allocate inner cells in vivo. Here we discover subcellular heterogeneities in tensile forces, generated by actomyosin cortical networks, which drive apical constriction to position the first inner cells of living mouse embryos. Myosin II accumulates specifically around constricting cells, and its disruption dysregulates constriction and cell fate.
View Article and Find Full Text PDFThe identity of a given cell type is determined by the expression of a set of genes sharing common cis-regulatory motifs and being regulated by shared transcription factors. Here, we identify cis and trans regulatory elements that drive gene expression in the bilateral sensory neuron ASJ, located in the head of the nematode Caenorhabditis elegans. For this purpose, we have dissected the promoters of the only two genes so far reported to be exclusively expressed in ASJ, trx-1 and ssu-1.
View Article and Find Full Text PDFThioredoxins are a class of evolutionarily conserved proteins that have been demonstrated to play a key role in many cellular processes involving redox reactions. We report here the genetic and biochemical characterization of Caenorhabditis elegans TRX-3, the first metazoan thioredoxin with an intestine-specific expression pattern. By using green fluorescent protein reporters we have found that TRX-3 is expressed in both the cytoplasm and the nucleus of intestinal cells, with a prominent localization at the apical membrane.
View Article and Find Full Text PDFCompaction of the preimplantation embryo is the earliest morphogenetic process essential for mammalian development, yet it remains unclear how round cells elongate to form a compacted embryo. Here, using live mouse embryo imaging, we demonstrate that cells extend long E-cadherin-dependent filopodia on to neighbouring cells, which control the cell shape changes necessary for compaction. We found that filopodia extension is tightly coordinated with cell elongation, whereas retraction occurs before cells become round again before dividing.
View Article and Find Full Text PDFTranscription factors use diffusion to search the DNA, yet the mechanisms controlling transcription factor diffusion during mammalian development remain poorly understood. Here we combine photoactivation and fluorescence correlation spectroscopy to study transcription factor diffusion in developing mouse embryos. We show that the pluripotency-associated transcription factor Oct4 displays both fast and Brownian and slower subdiffusive behaviours that are controlled by DNA interactions.
View Article and Find Full Text PDFIron oxide-supported gold samples were prepared by co-precipitation from HAuCl(4) and Fe(NO(3))(3). The activities of the samples as CO oxidation catalysts were tested without thermal treatment and following treatments in flows of He and O(2) at various temperatures. It was found that the untreated samples and those treated in a flow of He at 150 °C were more active than samples that had been treated at 400 °C in either a flow of O(2) or of He.
View Article and Find Full Text PDFAntioxid Redox Signal
June 2012
Aim: Functional in vivo studies on the mitochondrial thioredoxin system are hampered by the embryonic or larval lethal phenotypes displayed by murine or Drosophila knock-out models. Thus, the access to alternative metazoan knock-out models for the mitochondrial thioredoxin system is of critical importance.
Results: We report here the characterization of the mitochondrial thioredoxin system of Caenorhabditis elegans that is composed of the genes trx-2 and trxr-2.
Dietary restriction (DR) is the only environmental intervention known to extend adult lifespan in a wide variety of animal models. However, the genetic and cellular events that mediate the anti-aging programs induced by DR remain elusive. Here, we used the nematode Caenorhabditis elegans to provide the first in vivo evidence that a thioredoxin (TRX-1) regulates adult lifespan extension induced by DR.
View Article and Find Full Text PDFThioredoxins comprise a conserved family of redox regulators involved in many biological processes, including stress resistance and aging. We report that the C. elegans thioredoxin TRX-1 acts in ASJ head sensory neurons as a novel modulator of the insulin-like neuropeptide DAF-28 during dauer formation.
View Article and Find Full Text PDFSelenoproteins, in particular thioredoxin reductase, have been implicated in countering oxidative damage occurring during aging but the molecular functions of these proteins have not been extensively investigated in different animal models. Here we demonstrate that TRXR-1 thioredoxin reductase, the sole selenoprotein in Caenorhabditis elegans, does not protect against acute oxidative stress but functions instead together with GSR-1 glutathione reductase to promote the removal of old cuticle during molting. We show that the oxidation state of disulfide groups in the cuticle is tightly regulated during the molting cycle, and that when trxr-1 and gsr-1 function is reduced, disulfide groups in the cuticle remain oxidized.
View Article and Find Full Text PDFChem Soc Rev
September 2008
There are many examples of catalysis in solution by cationic complexes of gold, and recent results, reviewed here in this critical review, demonstrate that cationic gold species on oxide and zeolite supports are also catalytically active, for reactions including ethylene hydrogenation and CO oxidation. The catalytically active gold species on supports are evidently not restricted to isolated mononuclear gold complexes, but include gold clusters, which for at least some reactions are more active than the mononuclear complexes and for some reactions less active. Fundamental questions remain about the nature of cationic gold in supported catalysts, such as the nature of the cationic gold clusters and the nature of gold atoms at metal-support interfaces (88 references).
View Article and Find Full Text PDFMononuclear gold complexes bonded to TiO(2) were synthesized from Au(CH(3))(2)(C(5)H(7)O(2)), and their decomposition and conversion into gold nanoclusters on the TiO(2) surface were characterized by time-resolved X-ray absorption and infrared spectroscopies as the temperature of the sample in flowing helium was ramped up. Mass spectra of the evolved gases were also measured during this process. The results show (a) the onset of formation of CH(4) as a decomposition product, (b) the reduction of Au(III) to Au(0), and (c) the formation of Au-Au bonds, all occurring in approximately the same temperature range (about 335-353 K), indicating that the reduction and aggregation of the supported gold are simultaneous processes facilitated by the removal of methyl ligands initially bonded to the gold.
View Article and Find Full Text PDFThis article is a review of the physical characterization of well-defined site-isolated molecular metal complexes and metal clusters supported on metal oxides and zeolites. These surface species are of interest primarily as catalysts; as a consequence of their relatively uniform structures, they can be characterized much more precisely than traditional supported catalysts. The properties discussed in this review include metal nuclearity, oxidation state, and ligand environment, as well as metal-support interactions.
View Article and Find Full Text PDFMononuclear gold complexes in zeolite NaY were synthesized from initially physisorbed Au(CH3)2(C5H7O2) and characterized by X-ray absorption and infrared spectra recorded as the samples were exposed to flowing CO. X-ray absorption spectra demonstrate the formation of zero-valent gold nanoparticles during the CO treatment. Three new nu(CO) bands grew in during this treatment, at 2070, 2033, and 2000 cm(-1), characteristic of carbonyls of Au0.
View Article and Find Full Text PDFAdsorption of CO on gold supported in zeolite NaY at 85 K led to the formation of (i) various carbonyls and isocarbonyls typical of the zeolite and (ii) carbonyls formed at cationic gold sites (observed in the 2186-2171 cm(-1) region). Analysis of the behavior of the bands allows their assignment to carbonyls of Au(3+) ions. At temperatures higher than 220 K, CO adsorption led to the formation of a new type of Au(3+)-CO species (2207 cm(-1)).
View Article and Find Full Text PDFThioredoxins are a class of small proteins that play a key role in regulating many cellular redox processes. We report here the characterization of the first member of the thioredoxin family in metazoans that is mainly associated with neurons. The Caenorhabditis elegans gene B0228.
View Article and Find Full Text PDFMononuclear La2O3-supported AuIII complexes synthesised from AuIII(CH3)2(C5H7O2) and characterised by X-ray absorption spectroscopy are highly active, stable CO oxidation catalysts at room temperature, demonstrating the importance of the support in stabilizing catalytically active gold species, which need not include zerovalent gold for high activity.
View Article and Find Full Text PDFMononuclear gold complexes synthesized from AuIII(CH3)2(acac) in zeolite NaY were characterized by time-resolved X-ray absorption spectroscopy and infrared spectroscopy as they catalyzed CO oxidation at 298 K and 760 Torr in flow systems. Initial contact with a CO + O2 mixture led to the rapid formation of cationic gold complexes in which Au was bonded to approximately two zeolite O atoms, on average. Further contact with CO + O2 led to breaking of an Au-surface oxygen bond, giving a gold carbonyl anchored to approximately one O atom.
View Article and Find Full Text PDF