Publications by authors named "Juan C Farinas"

An Inductively Coupled Plasma Optical Emission Spectrometry method for simultaneous determination of Al, Ca, Cu, Fe, In, Mn, Ni, Si, Sr, Y, Zn, Zr and rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) in magnesium alloys, including the new rare earth elements-alloyed magnesium, has been developed. Robust conditions have been established as nebulizer argon flow rate of 0.5mLmin(-1) and RF incident power of 1500W, in which matrix effects were significantly reduced around 10%.

View Article and Find Full Text PDF

A systematic study on the influence of relative abundance of isotopes of elements in the coating (A(c)) and in the substrate (A(s)) on both shape of time-resolved signals and depth resolution (Delta z) was performed for depth profile analysis of metal coatings on metal substrates by ultraviolet (266 nm) nanosecond laser ablation inductively coupled plasma quadrupole mass spectrometry. Five coated samples with coating thicknesses of the same order of magnitude (20-30 microm) were tested: nickel coating on aluminium, chromium and copper, and steel coated with copper and zinc. A laser repetition rate of 1 Hz and a laser fluence of 21 J cm(-2) were used.

View Article and Find Full Text PDF

A methodology for bulk analysis of Al and Ti and for determination of soluble and total Al and Ti concentration in steel samples by laser ablation inductively coupled plasma mass spectrometry was developed. The spatial distribution (both at surface and within the sample) of the insoluble fraction of Al and Ti was also qualitatively estimated. Certified reference materials (CRMs) SS-451 to 460 (carbon steel) and 064-1 (Nb/Ti interstitial free steel), from BAS, and JK 2D (carbon steel) and JK 37 (highly alloyed steel), from SIMR, were studied.

View Article and Find Full Text PDF

An analytical method was developed for the determination of three major (Li, Ni and Co) and fourteen minor or trace elements (Al, Ba, Ca, Cu, Cr, Fe, K, Mg, Mn, Na, Si, Sr, Ti and V) in LiNi1-xCoxO2 (x=0.2-0.8) ceramic powders by inductively coupled plasma optical emission spectrometry.

View Article and Find Full Text PDF