Over the years, testicular volume has been used to evaluate the reproductive capacity of rams and the effects of different factors related to reproductive performance. The aim of this study was to determine the most suitable tool and formula to calculate testicular volume under field conditions to guarantee a more accurate determination of sperm production. First, testicles from 25 rams ( = 50) were measured in vivo and postmortem using calipers and ultrasonography during the breeding season (BS).
View Article and Find Full Text PDFFront Vet Sci
November 2022
The frequency of semen collection is a crucial factor to consider in the rams performance inside breeding centers workout. To evaluate this factor, ram Breeding Soundness Evaluation could include sperm quality evaluation and new predictive and non-invasive tools such as ultrasound technique. In this work, an advanced ultrasonography technology, analyzing the testicular volume, echotexture, and vascular function, was used in three different frequencies of semen collection (abstinence frequency, AF; standard frequency, SF; and intensive frequency, IF).
View Article and Find Full Text PDFBackground: Centrifugation is routinely employed in handling the ejaculates of some species, but it is not part of the commonly used protocols in ram. However, the development and implementation of new assisted reproductive technologies, alternative preservation models based on washing sperm from a cellular ageing-accelerating substance such as the seminal plasma, and basic studies in spermatology is associated with the use of centrifugation. This requires a specific evaluation of the centrifugation protocols considering the species-specific relationship with the potential damage produced by this procedure.
View Article and Find Full Text PDFIt is crucial to perform a deep study about the most extensively used antibiotics in sperm extenders. Most of the protocols and concentrations used in ram are direct extrapolations from other species. It is important to establish species-specific antibiotic treatments to optimize their use and if it is possible to reduce the quantity.
View Article and Find Full Text PDFThe optimization of sperm cryopreservation protocols in ram is a feasible tool to reinforce artificial insemination technologies considering the desirable application of sperm by vaginal/cervical or transcervical deposition. Cryopreservation provokes different types of damage on spermatozoa and many of these detrimental effects are triggered by redox deregulation. For this reason, the antioxidant supplementation in sperm cryopreservation protocols to decrease reactive oxygen species (ROS) levels and to equilibrate redox status has been widely employed in different species.
View Article and Find Full Text PDFOvine artificial insemination (OAI) is not commonly performed because of specific problems related to semen application techniques, leading to highly variable results. The ideal methodology (frozen-thawed semen/vaginal route) is unfeasible under field conditions due to the cervix morphology of the ewe, which prevents the process of intrauterine insemination necessary to obtain acceptable results. Currently, OAI commercial programmes use superficial cervical insemination, CAI (vaginal), with chilled semen (15°C) and intrauterine insemination, LAI (laparoscopic), with frozen-thawed semen.
View Article and Find Full Text PDFForward progressive motility of spermatozoa is an essential prerequisite for reproductive success, and sperm navigation is assisted by guidance mechanisms that may depend on micro-environmental factors. In the present study, we performed an integrated analysis of long-distance ram sperm migration in vitro that combined two environmental factors (10 μM progesterone and a geotactic effect) and the physiological status of the cells (capacitation treatment). A penetration assay was used in which spermatozoa had to travel 20 mm in a viscous medium (two media of differing viscosity: acrylamide and hyaluronic acid) through a tube device.
View Article and Find Full Text PDF