Native chemical ligation (NCL) ligates two unprotected peptides in an aqueous buffer. One of the fragments features a C-terminal α-thioester functional group, and the second bears an N-terminal cysteine. The reaction mechanism depicts two steps: an intermolecular thiol-thioester exchange resulting in a transient thioester, followed by an intramolecular acyl shift to yield the final native peptide bond.
View Article and Find Full Text PDFProtein palmitoylation or -acylation has emerged as a key regulator of cellular processes. Increasing evidence shows that this modification is not restricted to palmitate but it can include additional fatty acids, raising the possibility that differential -acylation contributes to the fine-tuning of protein activity. However, methods to profile the acyl moieties attached to proteins are scarce.
View Article and Find Full Text PDFChemical protein synthesis (CPS) is a consolidated field founded on the high chemospecificity of amide-forming reactions, most notably the native chemical ligation (NCL), but also on new technologies such as the Ser/Thr ligation of C-terminal salicylaldehyde esters and the α-ketoacid-hydroxylamine (KAHA) condensation. NCL was conceptually devised for the ligation of peptides having a C-terminal thioester and an N-terminal cysteine. The synthesis of C-terminal peptide thioesters has attracted a lot of interest, resulting in the invention of a wide diversity of different methods for their preparation.
View Article and Find Full Text PDFInherent susceptibility of peptides to enzymatic degradation in the gastrointestinal tract is a key bottleneck in oral peptide drug development. Here, we present a systematic analysis of (i) the gut stability of disulfide-rich peptide scaffolds, orally administered peptide therapeutics, and well-known neuropeptides and (ii) medicinal chemistry strategies to improve peptide gut stability. Among a broad range of studied peptides, cyclotides were the only scaffold class to resist gastrointestinal degradation, even when grafted with non-native sequences.
View Article and Find Full Text PDFNative chemical ligation (NCL) enables the direct chemical synthesis and semisynthesis of proteins of different sizes and compositions, streamlining the access to proteins containing posttranslational modifications (PTMs). NCL assembles peptide fragments through the chemoselective reaction of a C-terminal α-thioester peptide, prepared either by chemical synthesis or via intein-splicing technology, and a recombinant or synthetic peptide containing an N-terminal Cys. Whereas the generation of C-terminal α-thioester proteins can be achieved via the recombinant fusion of the sequence of interest to an intein domain, chemical methods can also be used for synthetically accessible proteins.
View Article and Find Full Text PDFBesides being regulated by G-protein-coupled receptors, the activity of heterotrimeric G proteins is modulated by many cytoplasmic proteins. GIV/Girdin and DAPLE (vl-ssociating rotein with a high frequency of ucine) are the best-characterized members of a group of cytoplasmic regulators that contain a Gα-binding and -activating (GBA) motif and whose dysregulation underlies human diseases, including cancer and birth defects. GBA motif-containing proteins were originally reported to modulate G proteins by binding Gα subunits of the G family (Gα) over other families (such as G, G, or G), and promoting nucleotide exchange However, some evidence suggests that this is not always the case, as phosphorylation of the GBA motif of GIV promotes its binding to Gα and inhibits nucleotide exchange.
View Article and Find Full Text PDFDespite the tremendous potential of Toll-like receptor 4 (TLR4) agonists in vaccines, their efficacy as monotherapy to treat cancer has been limited. Only some lipopolysaccharides (LPS) isolated from particular bacterial strains or structures like monophosphoryl lipid A (MPLA) derived from lipooligosaccharide (LOS), avoid toxic overactivation of innate immune responses while retaining adequate immunogenicity to act as adjuvants. Here, different LOS structures are incorporated into nanoparticle-filled phospholipid micelles for efficient vaccine delivery and more potent cancer immunotherapy.
View Article and Find Full Text PDFA simple procedure for C-terminal activation of peptides in solution and its application in native chemical ligation and protein synthesis is described. This method involves a mild thioesterification based on the conversion of an aryloxy-o-methylaminoanilide to thioester under aqueous conditions and in situ ligation with an N-terminal cysteine peptide. The versatility is shown in pH-controlled sequential ligations.
View Article and Find Full Text PDFRecent evidence has revealed that heterotrimeric G-proteins can be activated by cytoplasmic proteins that share an evolutionarily conserved sequence called the Gα-binding-and-activating (GBA) motif. This mechanism provides an alternative to canonical activation by G-protein-coupled receptors (GPCRs) and plays important roles in cell function, and its dysregulation is linked to diseases such as cancer. Here, we describe a discovery pipeline that uses biochemical and genetic approaches to validate GBA candidates identified by sequence similarity.
View Article and Find Full Text PDFNative chemical ligation (NCL) employing the N-methylbenzimidazolinone (MeNbz) linker readily provided the linear precursor of a 16-mer peptide that is difficult to obtain by stepwise solid-phase peptide synthesis. NCL and the workup conditions were improved toward a protocol that allows for quantitative removal of the 4-hydroxymercaptophenol additive and subsequent formation of the disulfide bridge in the NCL cocktail by oxidation in air, tolerated by the presence of tris(hydroxypropyl)phosphine.
View Article and Find Full Text PDFActivation of heterotrimeric G proteins by cytoplasmic nonreceptor proteins is an alternative to the classical mechanism via G protein-coupled receptors (GPCRs). A subset of nonreceptor G protein activators is characterized by a conserved sequence named the Gα-binding and activating (GBA) motif, which confers guanine nucleotide exchange factor (GEF) activity in vitro and promotes G protein-dependent signaling in cells. GBA proteins have important roles in physiology and disease but remain greatly understudied.
View Article and Find Full Text PDFHeterotrimeric G proteins are usually activated by the guanine-nucleotide exchange factor (GEF) activity of GPCRs. However, some non-receptor proteins are also GEFs. GIV (a.
View Article and Find Full Text PDFHeterotrimeric G proteins are quintessential signalling switches activated by nucleotide exchange on Gα. Although activation is predominantly carried out by G-protein-coupled receptors (GPCRs), non-receptor guanine-nucleotide exchange factors (GEFs) have emerged as critical signalling molecules and therapeutic targets. Here we characterize the molecular mechanism of G-protein activation by a family of non-receptor GEFs containing a Gα-binding and -activating (GBA) motif.
View Article and Find Full Text PDFAn emerging trend with semiconductor quantum dots (QDs) is their use as scaffolds to assemble multiple energy transfer pathways. Examples to date have combined various competitive and sequential Förster resonance energy transfer (FRET) pathways between QDs and fluorescent dyes, luminescent lanthanide complexes, and bioluminescent proteins. Here, we show that the photoluminescence (PL) of QD bioconjugates can also be modulated by a combination of FRET and charge transfer (CT), and characterize the concurrent effects of these mechanistically different pathways using PL measurements at both the ensemble and the single particle level.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2016
We previously showed that guanine nucleotide-binding (G) protein α subunit (Gα)-interacting vesicle-associated protein (GIV), a guanine-nucleotide exchange factor (GEF), transactivates Gα activity-inhibiting polypeptide 1 (Gαi) proteins in response to growth factors, such as EGF, using a short C-terminal motif. Subsequent work demonstrated that GIV also binds Gαs and that inactive Gαs promotes maturation of endosomes and shuts down mitogenic MAPK-ERK1/2 signals from endosomes. However, the mechanism and consequences of dual coupling of GIV to two G proteins, Gαi and Gαs, remained unknown.
View Article and Find Full Text PDFThe broad utility of native chemical ligation (NCL) in protein synthesis has fostered a search for methods that enable the efficient synthesis of C-terminal peptide-thioesters, key intermediates in NCL. We have developed an N-acylurea (Nbz) approach for the synthesis of thioester peptide precursors that efficiently undergo thiol exchange yielding thioester peptides and subsequently NCL reaction. However, the synthesis of some glycine-rich sequences revealed limitations, such as diacylated products that can not be converted into N-acylurea peptides.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
May 2014
Charge transfer processes with semiconductor quantum dots (QDs) have generated much interest for potential utility in energy conversion. Such configurations are generally nonbiological; however, recent studies have shown that a redox-active ruthenium(II)-phenanthroline complex (Ru-phen) is particularly efficient at quenching the photoluminescence (PL) of QDs, and this mechanism demonstrates good potential for application as a generalized biosensing detection modality since it is aqueous compatible. Multiple possibilities for charge transfer and/or energy transfer mechanisms exist within this type of assembly, and there is currently a limited understanding of the underlying photophysical processes in such biocomposite systems where nanomaterials are directly interfaced with biomolecules such as proteins.
View Article and Find Full Text PDFQuantum dots (QDs) are well-established as photoluminescent nanoparticle probes for in vitro or in vivo imaging, sensing, and even drug delivery. A critical component of this research is the need to reliably conjugate peptides, proteins, oligonucleotides, and other biomolecules to QDs in a controlled manner. In this chapter, we describe the conjugation of peptides to CdSe/ZnS QDs using a combination of polyhistidine self-assembly and hydrazone ligation.
View Article and Find Full Text PDFBioconjug Chem
September 2013
Interest in taking advantage of the unique spectral properties of semiconductor quantum dots (QDs) has driven their widespread use in biological applications such as in vitro cellular labeling/imaging and sensing. Despite their demonstrated utility, concerns over the potential toxic effects of QD core materials on cellular proliferation and homeostasis have persisted, leaving in question the suitability of QDs as alternatives for more traditional fluorescent materials (e.g.
View Article and Find Full Text PDFModular peptides displaying both quantum dot bioconjugation motifs and specific subcellular targeting domains were constructed using a chemoselective aniline-catalyzed hydrazone coupling chemistry. Peptides were ratiometrically assembled onto quantum dots to facilitate their specific delivery to either the plasma membrane, endosomes, the cytosol or the mitochondria of target cells.
View Article and Find Full Text PDFAn efficient, standard, mild, and copper-free imidazole-1-sulfonyl azide hydrochloride-based diazo-transfer method was implemented in a set of four resins that cover a broad range of hydrophobicity. The imidazole-1-sulfonyl azide hydrochloride is easily prepared/commercially available, stable upon storage at 4 °C, and proved to be a suitable alternative to triflyl azide for diazo-transfer reactions in amine functionalized resins. We have successfully applied the azido resins for the conjugation of a TFA-labile Wang-type linker using Click Chemistry.
View Article and Find Full Text PDFCell penetrating peptides facilitate efficient intracellular uptake of diverse materials ranging from small contrast agents to larger proteins and nanoparticles. However, a significant impediment remains in the subsequent compartmentalization/endosomal sequestration of most of these cargoes. Previous functional screening suggested that a modular peptide originally designed to deliver palmitoyl-protein thioesterase inhibitors to neurons could mediate endosomal escape in cultured cells.
View Article and Find Full Text PDFRecent studies show that polyvalent, ligand-modified nanoparticles provide significantly enhanced binding characteristics compared to isolated ligands. Here, we assess the ability of substrate-modified nanoparticles to provide enhanced enzymatic activity. Energy transfer assays allowed quantitative, real-time measurement of proteolytic digestion at polyvalent quantum dot-peptide conjugates.
View Article and Find Full Text PDFThe ability of luminescent semiconductor quantum dots (QDs) to engage in diverse energy transfer processes with organic dyes, light-harvesting proteins, metal complexes, and redox-active labels continues to stimulate interest in developing them for biosensing and light-harvesting applications. Within biosensing configurations, changes in the rate of energy transfer between the QD and the proximal donor, or acceptor, based upon some external (biological) event form the principle basis for signal transduction. However, designing QD sensors to function optimally is predicated on a full understanding of all relevant energy transfer mechanisms.
View Article and Find Full Text PDF