Pharmacological chaperone therapy (PCT) is a rather new approach consisting in targeting incorrectly folded proteins by small molecules, thus, facilitating the correct folding of the protein and inducing a recovery of its functionality. Many diseases result from mutations on specific genes; this patent review focuses on those pathologies where PCT has a potential application for enzymatic enhancement. Rare diseases are the main area where PCT has been applied and the most advanced compounds are aiming to cure lysosomal storage disorders such as Fabry, Pompe or Gaucher.
View Article and Find Full Text PDFA method for the preparation of oligomers by linking chromophore units is described. Specifically, the synthesis of chromophore units having a protected-hydroxyl group and a phosphoramidite function is described, along with a method to link several units using solid-phase phosphite-triester protocols.
View Article and Find Full Text PDFThe preparation of oligomers made up of several chromophore units as compounds with potential fluorescent and antiproliferative properties is described. Specifically, chromophore units with protected-amino groups and one carboxylic group are described, together with methods to assemble these units using peptide chemistry. Some of these compounds have antiproliferative activity.
View Article and Find Full Text PDFCryptolepine, a naturally occurring indoloquinoline alkaloid used as an antimalarial drug in Central and Western Africa, has been found to bind to DNA in a formerly unknown intercalation mode. Evidence from competition dialysis assays demonstrates that cryptolepine is able to bind CG-rich sequences containing nonalternating CC sites. Here we show that cryptolepine interacts with the CC sites of the DNA fragment d(CCTAGG)(2) in a base-stacking intercalation mode.
View Article and Find Full Text PDF