If we aim to develop efficient synthetic models of protein receptors and enzymes, we must understand the relationships of intra- and intermolecular interactions between hosts and guests and how they mutually influence their conformational energy landscape so as to adapt to each other to maximize binding energies and enhance substrate selectivities. Here, we introduce a novel design of cofacial (Zn)bisporphyrin cages based on dynamic imine bonding, which is synthetically simple, but at the same time highly robust and versatile, affording receptors composed of only -hybridized C and N atoms. The high structural rigidity of these cages renders them ideal hosts for ditopic molecules that can fit into the cavity and bind to both metal centers, leading to association constants as high as 10 M in chloroform.
View Article and Find Full Text PDFH-bonded -heterotriangulene (NHT) supramolecular polymers offer a nice playground to explore the nature and dynamics of electronic excitations in low-dimensional organic nanostructures. Here, we report on a comprehensive molecular modeling of the excited-state electronic structure and optical properties of model NHT stacks, highlighting the important role of intermolecular charge-transfer (CT) excitations in shaping their optical absorption and emission lineshapes. Most importantly, we show that the coupling between the local and CT excitations, modulated by the electric fields induced by the presence of polar amide groups forming H-bonded arrays along the stacks, significantly increases the resulting hybrid exciton bandwidth.
View Article and Find Full Text PDFA comprehensive investigation of two new molecular triads incorporating the diketopyrrolopyrrole unit into a quinoidized thienothiophene skeleton, which is further end-capped with dicyanomethylene (DPP-TT-CN) or phenoxyl groups (DPP-TT-PhO), has been carried out. A combination of UV-Vis-NIR and infrared spectroelectrochemical techniques and cryogenic UV-Vis-NIR absorption spectroscopy supported by theoretical calculations has been used. The main result is the formation of similar H-aggregates in the dimerization process of the neutral molecules and of the charged anionic species.
View Article and Find Full Text PDFHerein, we explore, from a theoretical perspective, the nonradiative photoinduced processes (charge separation and energy transfer) within a family of donor-acceptor supramolecular complexes based on the electron-donor truxene-tetrathiafulvalene (truxTTF) derivative and a series of curved fullerene fragments (buckybowls) of different shapes and sizes (C30H12, C32H12, and C38H14) as electron acceptors that successfully combine with truxTTF via non-covalent interactions. The resulting supramolecular complexes (truxTTF·C30H12, truxTTF·C32H12, and truxTTF·C38H14) undergo charge-separation processes upon photoexcitation through charge-transfer states involving the donor and acceptor units. Despite the not so different size of the buckybowls, they present noticeable differences in the charge-separation efficiency owing to a complex decay post-photoexcitation mechanism involving several low-lying excited states of different natures (local and charge-transfer excitations), all closely spaced in energy.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2024
We show an unexpected aggregation phenomenon of a long oligoyne (Py[16]) with 16 contiguous triple bonds and endcapped with bulky 3,5-bi(3,5-bis-tert-butylphenyl)pyridine groups. Aggregation of 1D π-conjugated oligoyne chains is rare given the minimal π-π intermolecular interactions as well as its flexibility that works against self-assembly. In dilute solutions, the reversible aggregation of Py[16] initiates at low temperature in the range of 140-180 K, and is not observed for shorter oligoynes in this series.
View Article and Find Full Text PDFNanothermometers are emerging probes as biomedical diagnostic tools. Especially appealing are nanoprobes using NIR light in the range of biological transparency window (BTW) since they have the advantages of a deeper penetration into biological tissues, better contrast, reduced phototoxicity and photobleaching. This article reports the preparation and characterization of organic nanoparticles (ONPs) doped with two polychlorinated trityl radicals (TTM and PTM), as well as studies of their electronic and optical properties.
View Article and Find Full Text PDFThe exponential effort in the design of hole-transporting materials (HTMs) during the last decade has been motivated by their key role as p-type semiconductors for (opto)electronics. Although structure-property relationships have been successfully rationalized to decipher optimal site substitutions, aliphatic chain lengths or efficient aromatic cores for enhanced charge conduction, the impact of molecular shape, material morphology and dynamic disorder has been generally overlooked. In this work, we characterize by means of a multi-level theoretical approach the charge transport properties of a novel planar small-molecule HTM based on the indoloindole aromatic core (IDIDF), and compare it with spherical spiro-OMeTAD.
View Article and Find Full Text PDFThe synthesis and self-assembling features of the -annulated perylene diimide (NPBI) 1 in different solvents are reported. Compound 1 possesses two chiral linkers, derived from ()-(+)-alaninol, that connect the central aromatic NPBI segment and the peripheral trialkoxybenzamide units. The Ala-based linker has been demonstrated to strongly favor the formation of intramolecularly H-bonded seven-membered pseudocycles.
View Article and Find Full Text PDFPolyethylene terephthalate (PET) is the most abundant polyester plastic, widely used in textiles and packaging, but, unfortunately, it is also one of the most discarded plastics after one use. In the last years, the enzymatic biodegradation of PET has sparked great interest owing to the discovery and subsequent mutation of PETase-like enzymes, able to depolymerize PET. FAST-PETase is one of the best enzymes hitherto proposed to efficiently degrade PET, although the origin of its efficiency is not completely clear.
View Article and Find Full Text PDFHydrogen-bonded squaramide (SQ) supramolecular polymers exhibit uncommon thermoreversible polymorph transitions between particle- and fiber-like nanostructures. SQs 1-3, with different steric bulk, self-assemble in solution into particles (AggI) upon cooling to 298 K, and SQs 1 and 2, with only one dendronic group, show a reversible transformation into fibers (AggII) by further decreasing the temperature to 288 K. Nano-DSC and UV/Vis studies on SQ 1 reveal a concentration-dependent transition temperature and ΔH for the AggI-to-AggII conversion, while the kinetic studies on SQ 2 indicate the on-pathway nature of the polymorph transition.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
August 2022
We have created a dataset of 269 perovskite solar cells, containing information about their perovskite family, cell architecture, and multiple hole-transporting materials features, including fingerprints, additives, and structural and electronic features. We propose a predictive machine learning model that is trained on these data and can be used to screen possible candidate hole-transporting materials. Our approach allows us to predict the performance of perovskite solar cells with reasonable accuracy and is able to successfully identify most of the top-performing and lowest-performing hole-transporting materials in the dataset.
View Article and Find Full Text PDFThe kinetics of the nonradiative photoinduced processes (charge-separation and charge-recombination) experimented in solution by a supramolecular complex formed by an electron-donating bowl-shaped truxene-tetrathiafulvalene (truxTTF) derivative and an electron-accepting fullerene fragment (hemifullerene, CH) has been theoretically investigated. The truxTTF·CH heterodimer shows a complex decay mechanism after photoexcitation with the participation of several low-lying excited states of different nature (local and charge-transfer excitations) all close in energy. In this scenario, the absolute rate constants for all of the plausible charge-separation (CS) and charge-recombination (CR) channels have been successfully estimated using the Marcus-Levich-Jortner (MLJ) rate expression, electronic structure calculations, and a multistate diabatization method.
View Article and Find Full Text PDFVibrations play a prominent role in magnetic relaxation processes of molecular spin qubits as they couple to spin states, leading to the loss of quantum information. Direct experimental determination of vibronic coupling is crucial to understand and control the spin dynamics of these nano-objects, which represent the limit of miniaturization for quantum devices. Herein, we measure the magneto-infrared properties of the molecular spin qubit system Na[Ho(WO)]·35HO.
View Article and Find Full Text PDFThe synthesis of two series of N-annulated perylene bisimides (PBIs), compounds and , is reported, and their self-assembling features are thoroughly investigated by a complete set of spectroscopic measurements and theoretical calculations. The study corroborates the enormous influence that the distance between the PBI core and the peripheral groups exerts on the chiroptical properties and the supramolecular polymerization mechanism. Compounds , with the peripheral groups separated from the central PBI core by two methylenes and an ester group, form J-type supramolecular polymers in a cooperative manner but exhibit negligible chiroptical properties.
View Article and Find Full Text PDFTo design molecular spin qubits with enhanced quantum coherence, a control of the coupling between the local vibrations and the spin states is crucial, which could be realized in principle by engineering molecular structures via coordination chemistry. To this end, understanding the underlying structural factors that govern the spin relaxation is a central topic. Here, we report the investigation of the spin dynamics in a series of chemically designed europium(II)-based endohedral metallofullerenes (EMFs).
View Article and Find Full Text PDFFunctional materials composed of spontaneously self-assembled electron donor and acceptor entities capable of generating long-lived charge-separated states upon photoillumination are in great demand as they are key in building the next generation of light energy harvesting devices. However, creating such well-defined architectures is challenging due to the intricate molecular design, multistep synthesis, and issues associated in demonstrating long-lived electron transfer. In this study, we have accomplished these tasks and report the synthesis of a new fullerene-bis-Zn-porphyrin -bisadduct by tether-directed functionalization of C via a multistep synthetic protocol.
View Article and Find Full Text PDFTwo novel and simple donor-π-bridge-donor (D-π-D) hole-transporting materials (HTMs) containing two units of the p-methoxytriphenylamine (TPA) electron donor group covalently bridged by means of the 3,4-dimethoxyselenophene spacer through single and triple bonds are reported. The optoelectronic and thermal properties of the new selenium-containing HTMs have been determined using standard experimental techniques and theoretical density functional theory (DFT) calculations. The selenium-based HTMs have been incorporated in mesoporous perovskite solar cells (PSCs) in combination with the triple-cation perovskite [(FAPbI ) (MAPbBr ) ] [CsPbI ] .
View Article and Find Full Text PDFA decade after the report of the first efficient perovskite-based solar cell, development of novel hole-transporting materials (HTMs) is still one of the main topics in this research field. Two of the main advance vectors of this topic lie in obtaining materials with enhanced hole-extracting capability and in easing their synthetic cost. The use of anthra[1,9-:5,10-'']dithiophene (ADT) as a flat π-conjugated frame for bearing arylamine electroactive moieties allows obtaining two novel highly efficient HTMs from very cheap precursors.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2021
Molecular organization plays an essential role in organic semiconductors since it determines the extent of intermolecular interactions that govern the charge transport present in all electronic applications. The benefits of hydrogen bond-directed self-assembly on charge transport properties are demonstrated by comparing two analogous pyrrole-based, fused heptacyclic molecules. The rationally designed synthesis of these materials allows for inducing or preventing hydrogen bonding.
View Article and Find Full Text PDFThe rising interest on pathway complexity in supramolecular polymerization has prompted the finding of novel monomer designs able to stabilize kinetically trapped species and generate supramolecular polymorphs. In the present work, the exploitation of the Z/E (geometrical) isomerism of squaramide (SQ) units to produce various self-assembled isoforms and complex supramolecular polymerization pathways in methylcyclohexane/CHCl mixtures is reported for the first time. This is achieved by using a new bissquaramidic macrocycle (MSq) that self-assembles into two markedly different thermodynamic aggregates, AggA (discrete cyclic structures) and AggB (fibrillar structures), depending on the solvent composition and concentration.
View Article and Find Full Text PDFColumnar polymers and liquid crystals obtained from π-conjugated cone-shaped molecules are receiving increasing interest due to the possibility of obtaining unconventional polar organizations that show anisotropic charge transport and unique chiroptical properties. However, and in contrast to the more common planar discotics, the self-assembly of conic or pyramidic molecules in solution remains largely unexplored. Here, we show how a molecular geometry change, from flat to conic, can generate supramolecular landscapes where different self-assembled species, each of them being under thermodynamic equilibrium with the monomer, exist exclusively within distinct regimes.
View Article and Find Full Text PDFA comparative investigation of the chiral amplification features of a series of three families of C -symmetric tricarboxamides, 1,3,5-triphenylbenzenetricarboxamides (TPBAs), benzenetricarboxamides (BTAs) and oligo(phenylene ethynylene) tricarboxamides (OPE-TAs), is here reported. As previously observed for BTAs and OPE-TAs, a similar dichroic response is obtained for TPBAs decorated with one, two or three chiral side chains bearing stereogenic centers, thus confirming the efficient transfer of point chirality to the supramolecular helical aggregates. Unlike BTAs and OPE-TAs, the chiral amplification ability of TPBAs in majority rules experiments shows a negligible dependence on the number of chiral centers per monomeric unit, and stands the largest among the series of tricarboxamides.
View Article and Find Full Text PDFThree novel donor-π-bridge-donor (D-π-D) hole-transporting materials (HTMs) featuring triazatruxene electron-donating units bridged by different 3,4-ethylenedioxythiophene (EDOT) π-conjugated linkers have been synthesized, characterized, and implemented in mesoporous perovskite solar cells (PSCs). The optoelectronic properties of the new dumbbell-shaped derivatives (DTTXs) are highly influenced by the chemical structure of the EDOT-based linker. Red-shifted absorption and emission and a stronger donor ability were observed in passing from DTTX-1 to DTTX-2 due to the extended π-conjugation.
View Article and Find Full Text PDFThe ability of a star-shaped tris(triazolyl)triazine derivative to hierarchically build supramolecular chiral columnar organizations through the formation of H-bonded complexes with benzoic acids was studied from a theoretical and experimental point of view. The combined study has been done at three different levels including the study of the structure of the triazine core, the association with benzoic acids in stoichiometry 1:3, and the assembly of 1:3 complexes in helical aggregates. Although the star-shaped triazine core crystallizes in a non-C conformation, the C -symmetric conformation is theoretically predicted to be more stable and gives rise to a favorable C supramolecular 1:3 complex upon the interaction with three benzoic acids in their voids.
View Article and Find Full Text PDFThree hole-transporting materials (HTMs) were prepared following a straightforward synthetic route by cross-linking arylamine-based ligands with a simple thieno[3,2-]thiophene (TbT) core. The novel HTMs were fully characterized with standard techniques to gain insight into their optical and electrochemical properties and were incorporated in solution-processed mesoporous (FAPbI)(MAPbBr) perovskite-based solar cells. The similar molecular structure of the synthesized HTMs was leveraged to investigate the role that the bridging units between the conjugated TbT core and the peripheral arylamine units plays on their properties and thereby on the photovoltaic response.
View Article and Find Full Text PDF