Publications by authors named "Juan Antonio Macia-Agullo"

Zeolites are crystalline inorganic solids with microporous structures, having widespread applications in the fields of catalysis, separation, adsorption, microelectronics, and medical diagnosis. A major drawback of zeolites is the mass transfer limitation due to the small size of the micropores (less than 1 nm). Numerous efforts have been dedicated to integrating mesopores with the microporous zeolite structures by using templating and/or destructive approaches.

View Article and Find Full Text PDF

The sol-gel co-condensation of organo-phosphonates to titanium alkoxides enables access to novel organic-inorganic hybrids based on phosphonate-bridged titanium dioxide. In this contribution, we bring new perspectives to the long established sol-gel mineralization of titanium alkoxide species, by harnessing the virtues of the well-designed phosphonate-terminated phosphorus dendrimers as reactive amphiphilic nanoreactor, confined medium and cross-linked template to generate discrete crystalline anatase nanoparticles at low temperature (T = 60 °C). An accurate investigation on several parameters (dendrimer generation, dendrimer-to-titanium alkoxide ratio, precursor reactivity, temperature, solvent nature, salt effect) allows a correlation between the network condensation, the opening porous framework and the crystalline phase formation.

View Article and Find Full Text PDF

Photobiocatalysts are constituted by a semiconductor with or without a light harvester that activates an enzyme. A logical source of inspiration for the development of photobiocatalysts has been natural photosynthetic centers. In photobiocatalysis, the coupling of the semiconductor and the enzyme frequently requires a natural cofactor and a relay transferring charge carriers from the semiconductor.

View Article and Find Full Text PDF

We describe a general approach for the synthesis of micro-/nanostructured metal chalcogenides from elemental precursors. The excellent solubility of sulfur, selenium, and tellurium in phosphonium ionic liquids promotes fast reactions between chalcogens and various metal powders upon microwave heating, giving crystalline products. This approach is green, universal, and scalable.

View Article and Find Full Text PDF

Commercial P25 modified by Au-Cu alloy nanoparticles as thin film exhibits, for CO2 reduction by water under sun simulated light, a rate of methane production above 2000 μmol (g of photocatalyst)(-1) h(-1). Although evolution of hydrogen is observed and O2 and ethane detected, the selectivity of conduction band electrons for methane formation is almost complete, about 97%. This photocatalytic behavior is completely different from that measured for Au/P25 (hydrogen evolution) and Cu/P25 (lower activity, but similar methane selectivity).

View Article and Find Full Text PDF

The reduction of carbon dioxide to useful chemicals has received a great deal of attention as an alternative to the depletion of fossil resources without altering the atmospheric CO2 balance. As the chemical reduction of CO2 is energetically uphill due to its remarkable thermodynamic stability, this process requires a significant transfer of energy. Achievements in the fields of photocatalysis during the last decade sparked increased interest in the possibility of using sunlight to reduce CO2.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: