Green synthesis of gold nanoparticles (AuNPs) using microorganisms has been generally studied aiming for high-yield production and morphologies appropriated for various applications, such as bioremediation, (bio)sensors, and (bio)catalysis. Numerous approaches showed the individual effect of factors influencing the synthesis of AuNPs with limited analysis of the governing factors enhancing the production and desired quality of the precipitates. This study proposes a fractional-factorial design to investigate the simultaneous influence of seven environmental factors (cell concentration, temperature, anoxic/oxic conditions, pH, gold concentration, electron donor type, and bacterial species) on the recovery yield and synthesis of targeted AuNPs.
View Article and Find Full Text PDFBioleaching is a promising strategy to recover valuable metals from spent printed circuit boards (PCBs). The performance of the process is catalyzed by microorganisms, which the toxic effect of PCBs can inhibit. This study aimed to investigate the capacity of an acidophilic iron-oxidizing culture, mainly composed of , to oxidize iron in PCB-enriched environments.
View Article and Find Full Text PDF