Publications by authors named "Juan Amaro-Gahete"

The direct conversion of solar energy into chemical energy represents an enormous challenge for current science. One of the commonly proposed photocatalytic systems is composed of a photosensitizer (PS) and a catalyst, together with a sacrificial electron donor (ED) when only the reduction of protons to H is addressed. Layered double hydroxides (LDH) have emerged as effective catalysts.

View Article and Find Full Text PDF

Microwave-induced plasmas generated at atmospheric pressure are very attractive for a great variety of applications since they have a relatively high electron density and can generate large amounts of reactive species. Argon plasmas can be sustained inside dielectric tubes but are radially contracted and exhibit filamentation effects when the diameter of the tube is not narrow enough (over 1.5 mm).

View Article and Find Full Text PDF

The heterogenization of metal-complex catalysts to be applied in water oxidation reactions is a currently growing field of great scientific impact for the development of energy conversion devices simulating the natural photosynthesis process. The attachment of IrCp*Cl complexes to the dipyridyl-pyridazine N-chelating sites on the surface of SBA-15 promotes the formation of metal bipyridine-like complexes, which can act as catalytic sites in the oxidation of water to dioxygen, the key half-reaction of artificial photosynthetic systems. The efficiency of the heterogeneous catalyst, Ir@NdppzSBA, in cerium(IV)-driven water oxidation was thoroughly evaluated, achieving high catalytic activity even at a long reaction time.

View Article and Find Full Text PDF

A new heterogeneous catalyst has been synthesized by immobilization of a copper complex on dipyridyl-pyridazine functionalized periodic mesoporous organosilica (dppz-vPMO). This ordered support was first prepared by a co-condensation reaction between vinyltriethoxysilane and 1,2-bis(trimethoxysilyl)ethane and further post-functionalized through a hetero Diels-Alder reaction with 3,6-di-2-pyridyl-1,2,4,5-tetrazine. Techniques such as XRD, N isotherms, TEM, C NMR, XPS and DRIFT, among others, were employed to characterize the surface functionalized materials.

View Article and Find Full Text PDF

Lithium-sulfur (Li-S) batteries have received enormous interest as a promising energy storage system to compete against limited, non-renewable, energy sources due to their high energy density, sustainability, and low cost. Among the main challenges of this technology, researchers are concentrating on reducing the well-known "shuttle effect" that generates the loss and corrosion of the active material during cycling. To tackle this issue, metal-organic frameworks (MOF) are considered excellent sulfur host materials to be part of the cathode in Li-S batteries, showing efficient confinement of undesirable polysulfides.

View Article and Find Full Text PDF
Article Synopsis
  • Graphene-based materials possess exceptional physical properties, making them suitable for various applications, but they are less amenable to functionalization compared to their oxides.
  • The study describes a Diels-Alder reaction involving graphite and 3,6-di(2-pyridyl)-1,2,4,5-tetrazine, leading to functionalized graphene materials that can be grafted with a europium complex.
  • These modified materials emit strong red light under UV radiation and can be visualized using confocal microscopy, suggesting potential for novel properties due to their rich coordination chemistry with metal complexes.
View Article and Find Full Text PDF

Graphene-based materials are highly interesting in virtue of their excellent chemical, physical and mechanical properties that make them extremely useful as privileged materials in different industrial applications. Sonochemical methods allow the production of low-defect graphene materials, which are preferred for certain uses. Graphene nanosheets (GNS) have been prepared by exfoliation of a commercial micrographite (MG) using an ultrasound probe.

View Article and Find Full Text PDF

Highly crystalline MIL-88A particles have been successfully synthesized via fast ultrasound-assisted processes. The influence of the sonication generator and synthesis time on the structure, crystallinity, morphology and surface area of the materials were studied in detail. Under this modified ultrasonic method, X-ray diffraction patterns of MIL-88A particles showed highly crystalline structures in contrast to those reported in literature.

View Article and Find Full Text PDF

A suitable methodology of synthesis of coumarin derivatives by Pechmann reaction over heterogeneous solid acid catalysts in a free solvent media under microwave irradiation is described. Resorcinol, phenol and ethyl acetoacetate were selected as model reactants in the Pechmann condensation. The catalytic activity of several materials-Amberlyst-15, zeolite β and sulfonic acid functionalized hybrid silica-in solvent-free microwave-assisted synthesis of the corresponding coumarin derivatives has been investigated in detail.

View Article and Find Full Text PDF