Publications by authors named "Juan Alberto Arranz-Tagarro"

Diabetes mellitus and hypertension are diseases that are strongly correlated. A major factor in this correlation is the renin-angiotensin system (RAS), with the peptide angiotensin II being a key component. This study analyzed the impact of Angiotensin Type 1 receptor (AT1R) and Angiotension Type 2 receptor (AT2R) in atrial function.

View Article and Find Full Text PDF

Background: Chronic ethanol (EtOH) consumption has been associated with deleterious effects on the cardiovascular system by abnormal calcium (Ca2+) handling. Store-operated Ca2+ entry (SOCE) is related to cardiovascular remodeling which leads to the hypertension development, and the coupling between STIM-1 (ER Ca2+ sensor) and Orai-1 (channel pore) is a key mechanism to control SOCE through of store-operated Ca2+ channels (SOCCs). However, the role of STIM-1/Orai-1-mediated SOCE and its cross-talk with EtOH-triggered vascular remodeling and hypertension remain poorly understood.

View Article and Find Full Text PDF

Compound IG20 is a newly synthesised sulphated glycolipid that promotes neuritic outgrowth and myelinisation, at the time it causes the inhibition of glial proliferation and facilitates exocytosis in chromaffin cells. Here we have shown that IG20 at 0.3-10 μM afforded neuroprotection in rat hippocampal slices stressed with veratridine, glutamate or with oxygen plus glucose deprivation followed by reoxygenation (OGD/reox).

View Article and Find Full Text PDF

We describe the synthesis of gramine derivatives and their pharmacological evaluation as multipotent drugs for the treatment of Alzheimer's disease. An innovative multitarget approach is presented, targeting both voltage-gated Ca(2+) channels, classically studied for neurodegenerative diseases, and Ser/Thr phosphatases, which have been marginally aimed, even despite their key role in protein τ dephosphorylation. Twenty-five compounds were synthesized, and mostly their neuroprotective profile exceeded that offered by the head compound gramine.

View Article and Find Full Text PDF

Altered synaptic transmission with excess glutamate release has been implicated in the loss of motoneurons occurring in amyotrophic lateral sclerosis (ALS). Hyperexcitability or hypoexcitability of motoneurons from mice carrying the ALS mutation SOD1(G93A) (mSOD1) has also been reported. Here we have investigated the excitability, the ion currents, and the kinetics of the exocytotic fusion pore in chromaffin cells from postnatal day 90 to postnatal day 130 mSOD1 mice, when motor deficits are already established.

View Article and Find Full Text PDF

Introduction: Altered homeostasis of cell calcium movement is a central stage in multiple diseases of CNS. This explains the great therapeutic interest in blockers for the various subtypes of voltage-activated calcium channels (VACCs) expressed in neurons. Mitigation of Ca(2+) entry excess elicited by those blockers may restore the altered synaptic transmission, synaptic plasticity and gene expression to normal parameters, ending the enhanced neuronal vulnerability.

View Article and Find Full Text PDF

At early life, the adrenal chromaffin cells respond with a catecholamine surge under hypoxic conditions. This response depends on Ca(2+) entry through voltage-activated calcium channels (VACCs). We have investigated here three unresolved questions that concern this response in rat embryo chromaffin cells (ECCs): 1) the relative contribution of L (α1D, Cav1.

View Article and Find Full Text PDF

In a recent study we found that cerebrospinal fluids (CSFs) from amyotrophic lateral sclerosis (ALS) patients caused 20-30% loss of cell viability in primary cultures of rat embryo motor cortex neurons. We also found that the antioxidant resveratrol protected against such damaging effects and that, surprisingly, riluzole antagonized its protecting effects. Here we have extended this study to the interactions of riluzole with 3 other recognized neuroprotective agents, namely memantine, minocycline and lithium.

View Article and Find Full Text PDF

The activity of the plasmalemmal Na(+)/Ca(2+) exchanger (NCX) is highly sensitive to temperature. We took advantage of this fact to explore here the effects of the NCX blocker KB-R7943 (KBR) at 22 and 37°C on the kinetics of Ca(2+) currents (ICa), cytosolic Ca(2+) ([Ca(2+)]c) transients, and catecholamine release from bovine chromaffin cells (BCCs) stimulated with high K(+), caffeine, or histamine. At 22°C, the effects of KBR on those parameters were meager or nil.

View Article and Find Full Text PDF

Since the first generation of MAO inhibitors was developed, more than fifty years ago, this family of drugs has been ups and downs over the last decades. Actually, interest in MAO inhibitors is reviving and the emergence of new advances in the rational design of molecules and new techniques to predict the in vivo behavior has encouraged the research for new drugs with therapeutic potential in this area. The classic MAOIs have been widely used as antidepressants during the two decades after its introduction in clinic.

View Article and Find Full Text PDF

For the last two decades, most efforts on new drug development to treat Alzheimer's disease have been focused to inhibit the synthesis of amyloid beta (Aβ), to prevent Aβ deposition, or to clear up Aβ plaques from the brain of Alzheimer's disease (AD) patients. Other pathogenic mechanisms such as the hyperphosphorylation of the microtubular tau protein (that forms neurofibrillary tangles) have also been addressed as, for instance, with inhibitors of the enzyme glycogen synthase-3 kinase beta (GSK3β). However, in spite of their proven efficacy in animal models of AD, all these compounds have so far failed in clinical trials done in AD patients.

View Article and Find Full Text PDF