Aquaporin-4 (AQP4) facilitates water transport across astrocytic membranes in the brain, forming highly structured nanometric arrays. AQP4 has a central role in regulating cerebrospinal fluid (CSF) circulation and facilitating the clearance of solutes from the extracellular space of the brain. Adrenergic signaling has been shown to modulate the volume of the extracellular space of the brain AQP4 localized at the end-feet of astrocytes, but the mechanisms by which AQP4 regulates CSF inflow and outflow in the brain remain elusive.
View Article and Find Full Text PDFImpairments in identifying and responding to the emotions of others manifest in a variety of psychopathologies. Therefore, elaborating the neurobiological mechanisms that underpin social responses to social emotions, or social affective behavior, is a translationally important goal. The insular cortex is consistently implicated in stress-related social and anxiety disorders, which are associated with diminished ability to make and use inferences about the emotions of others to guide behavior.
View Article and Find Full Text PDFSocial interactions are shaped by features of the interactants, including age, emotion, sex, and familiarity. Age-specific responses to social affect are evident when an adult male rat is presented with a pair of unfamiliar male conspecifics, one of which is stressed via two foot shocks and the other naive to treatment. Adult test rats prefer to interact with stressed juvenile (postnatal day 30, PN30) conspecifics but avoid stressed adult (PN50) conspecifics.
View Article and Find Full Text PDFProtein aggregation is a complex process resulting in the formation of heterogeneous mixtures of aggregate populations that are closely linked to neurodegenerative conditions, such as Alzheimer's disease. Here, we find that soluble aggregates formed at different stages of the aggregation process of amyloid beta (Aβ42) induce the disruption of lipid bilayers and an inflammatory response to different extents. Further, by using gradient ultracentrifugation assay, we show that the smaller aggregates are those most potent at inducing membrane permeability and most effectively inhibited by antibodies binding to the C-terminal region of Aβ42.
View Article and Find Full Text PDFReversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain and arginines in structured C-terminal domains also contribute to phase separation. These interactions are modulated by post-translational arginine methylation, wherein arginine hypomethylation strongly promotes phase separation and gelation.
View Article and Find Full Text PDFSocial animals detect the affective states of conspecifics and utilize this information to orchestrate social interactions. In a social affective preference text in which experimental adult male rats could interact with either naive or stressed conspecifics, the experimental rats either approached or avoided the stressed conspecific, depending upon the age of the conspecific. Specifically, experimental rats approached stressed juveniles but avoided stressed adults.
View Article and Find Full Text PDFSmall aggregates of misfolded proteins play a key role in neurodegenerative disorders. Such species have proved difficult to study due to the lack of suitable methods capable of resolving these heterogeneous aggregates, which are smaller than the optical diffraction limit. We demonstrate here an all-optical fluorescence microscopy method to characterise the structure of individual protein aggregates based on the fluorescence anisotropy of dyes such as thioflavin-T, and show that this technology is capable of studying oligomers in human biofluids such as cerebrospinal fluid.
View Article and Find Full Text PDFThe brain is a dynamic structure with the extracellular space (ECS) taking up almost a quarter of its volume. Signalling molecules, neurotransmitters and nutrients transit via the ECS, which constitutes a key microenvironment for cellular communication and the clearance of toxic metabolites. The spatial organization of the ECS varies during sleep, development and aging and is probably altered in neuropsychiatric and degenerative diseases, as inferred from electron microscopy and macroscopic biophysical investigations.
View Article and Find Full Text PDFExperimental observations in cell biology have advanced to a stage where theory could play a larger role, much as it has done in the physical sciences. Possibly the lack of a common framework within which experimentalists, computational scientists and theorists could equally contribute has hindered this development, for the worse of both disciplines. Here we demonstrate the usage of tools and concepts from statistical mechanics to describe processes inside living cells based on experimental data, suggesting that future theoretical/computational models may be based on such concepts.
View Article and Find Full Text PDFRecent developments in single-molecule imaging have revealed many biological mechanisms, providing high spatial and temporal resolution maps of molecular events. In neurobiology, these techniques unveiled that plasma membrane neurotransmitter receptors and transporters laterally diffuse at the surface of cultured brain cells. The photostability of bright nanoprobes, such as quantum dots (QDs), has given access to neurotransmitter receptor tracking over long periods of time with a high spatial resolution.
View Article and Find Full Text PDFRecent progress in the study of the brain has been greatly facilitated by the development of new tools capable of minimally-invasive, robust coupling to neuronal assemblies. Two prominent examples are the microelectrode array (MEA), which enables electrical signals from large numbers of neurons to be detected and spatiotemporally correlated, and optogenetics, which enables the electrical activity of cells to be controlled with light. In the former case, high spatial density is desirable but, as electrode arrays evolve toward higher density and thus smaller pitch, electrical crosstalk increases.
View Article and Find Full Text PDFSingle-molecule imaging has changed the way we understand many biological mechanisms, particularly in neurobiology, by shedding light on intricate molecular events down to the nanoscale. However, current single-molecule studies in neuroscience have been limited to cultured neurons or organotypic slices, leaving as an open question the existence of fast receptor diffusion in intact brain tissue. Here, for the first time, we targeted dopamine receptors in vivo with functionalized quantum dots and were able to perform single-molecule tracking in acute rat brain slices.
View Article and Find Full Text PDFIn the multidisciplinary fields of nanobiology and nanomedicine, single-walled carbon nanotubes (SWCNTs) have shown great promise due to their unique morphological, physical and chemical properties. However, understanding and suppressing their cellular toxicity is a mandatory step before promoting their biomedical applications. In light of the flourishing recent literature, we provide here an extensive review on SWCNT cellular toxicity and an attempt to identify the key parameters to be considered in order to obtain SWCNT samples with minimal or no cellular toxicity.
View Article and Find Full Text PDFControl of the glutamate time course in the synapse is crucial for excitatory transmission. This process is mainly ensured by astrocytic transporters, high expression of which is essential to compensate for their slow transport cycle. Although molecular mechanisms regulating transporter intracellular trafficking have been identified, the relationship between surface transporter dynamics and synaptic function remains unexplored.
View Article and Find Full Text PDFHigh-resolution live cell microscopy will soon have a fundamental role in understanding bio-nano interactions, providing material that can be exploited using single particle tracking techniques. The present work uses 3D timelapse images obtained with confocal microscopy, to temporally resolve the co-localization between polystyrene nanoparticles and lysosomes in live cells through object-based measurements.
View Article and Find Full Text PDFBackground: Nanoparticles (NPs) are currently used in a wide variety of fields such as technology, medicine and industry. Due to the novelty of these applications and to ensure their success, a precise characterization of the interactions between NPs and cells is essential.
Findings: The current study explores the uptake of polystyrene NPs by 1321N1 human astrocytoma and A549 human lung carcinoma cell lines.
Behavioral control over a stressful event reduces the negative consequences of not only that event, but also future stressful events. Plasticity in the prelimbic (PL) medial prefrontal cortex is critical to this process, but the nature of the changes induced is unknown. We used patch-clamp recording to measure the intrinsic excitability of PL pyramidal neurons in acute slices from rats exposed to either escapable stress (ES), for which rats had behavioral control over tail-shock termination, or inescapable stress (IS) without control.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB, regulate a wide range of cellular processes, including dendritic spine formation and functional synapse plasticity. However, the signaling mechanisms that link BDNF-activated TrkB to F-actin remodeling enzymes and dendritic spine morphological plasticity remain poorly understood. We report here that BDNF/TrkB signaling in neurons activates the Vav family of Rac/RhoA guanine nucleotide exchange factors through a novel TrkB-dependent mechanism.
View Article and Find Full Text PDFOn a daily basis we are exposed to cationic nanoparticulates in many different ways. They are known to distribute to many organs of the body, and while some evidence suggests that these nanoparticles are toxic to cells, the mechanism of their toxicity is not clear. Here we apply a combination of biochemical and imaging techniques to study the mechanism by which amine-modified polystyrene nanoparticles induce cell death in a human brain astrocytoma cell line.
View Article and Find Full Text PDFHere we describe the first report of using low-cost cellular or web-based digital cameras to image and quantify standardized rapid immunoassay strips as a new point-of-care diagnostic and forensics tool with health applications. Quantitative ratiometric pixel density analysis (QRPDA) is an automated method requiring end-users to utilize inexpensive (∼ $1 USD/each) immunotest strips, a commonly available web or mobile phone camera or scanner, and internet or cellular service. A model is described whereby a central computer server and freely available IMAGEJ image analysis software records and analyzes the incoming image data with time-stamp and geo-tag information and performs the QRPDA using custom JAVA based macros (http://www.
View Article and Find Full Text PDFConverging evidence suggests that salience-associated modulation of behavior is mediated by the release of monoamines and that monoaminergic activation of D(1)/D(5) receptors is required for normal hippocampal-dependent learning and memory. However, it is not understood how D(1)/D(5) modulation of hippocampal circuits can affect salience-associated learning and memory. We have observed in CA1 pyramidal neurons that D(1)/D(5) receptor activation elicits a bidirectional long-term plasticity of NMDA receptor-mediated synaptic currents with the polarity of plasticity determined by NMDA receptor, NR2A/B subunit composition.
View Article and Find Full Text PDF