Publications by authors named "Juan A Garcia-Martin"

GEMIN5 is a multifunctional protein involved in various aspects of RNA biology, including biogenesis of snRNPs and translation control. Reduced levels of GEMIN5 confer a differential translation to selective groups of mRNAs, and biallelic variants reducing protein stability or inducing structural conformational changes are associated with neurological disorders. Here, we show that upregulation of GEMIN5 can be detrimental as it modifies the steady state of mRNAs and enhances alternative splicing (AS) events of genes involved in a broad range of cellular processes.

View Article and Find Full Text PDF

Selective translation allows to orchestrate the expression of specific proteins in response to different signals through the concerted action of cis-acting elements and RNA-binding proteins (RBPs). Gemin5 is a ubiquitous RBP involved in snRNP assembly. In addition, Gemin5 regulates translation of different mRNAs through apparently opposite mechanisms of action.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) core is a highly conserved and multifunctional protein that forms the viral capsid, making it an attractive target for HCV detection and inhibition. Aptamers are in vitro selected, single-stranded nucleic acids (RNA or ssDNA) with growing applicability in viral diagnostics and therapy. We have carried out DNA and RNA in vitro selection against six different variants of HCV core protein: two versions of the full-length protein of genotype 1, and the hydrophilic domain of genotypes 1 to 4.

View Article and Find Full Text PDF

Understanding how genotypes map onto phenotypes, fitness, and eventually organisms is arguably the next major missing piece in a fully predictive theory of evolution. We refer to this generally as the problem of the genotype-phenotype map. Though we are still far from achieving a complete picture of these relationships, our current understanding of simpler questions, such as the structure induced in the space of genotypes by sequences mapped to molecular structures, has revealed important facts that deeply affect the dynamical description of evolutionary processes.

View Article and Find Full Text PDF
Article Synopsis
  • Rapid and cost-effective tools for designing synthetic RNA constructs like riboregulators are essential for advancing diagnostics and therapies.
  • MoiRNAiFold is a new, user-friendly software that utilizes Constraint Programming and innovative strategies to efficiently design RNA, handling multiple constraints and improving gene expression regulation features.
  • Proven effective through benchmarking and real-world testing, MoiRNAiFold produces functional RNA sequences, is available for free online, and outperforms previous design software.
View Article and Find Full Text PDF

The environmental fate of many functional molecules that are produced on a large scale as precursors or as additives to specialty goods (plastics, fibers, construction materials, etc.), let alone those synthesized by the pharmaceutical industry, is generally unknown. Assessing their environmental fate is crucial when taking decisions on the manufacturing, handling, usage, and release of these substances, as is the evaluation of their toxicity in humans and other higher organisms.

View Article and Find Full Text PDF

Computational tools are essential in the process of designing a CRISPR/Cas experiment for the targeted modification of an organism's genome. Among other functionalities, these tools facilitate the design of a guide-RNA (gRNA) for a given nuclease that maximizes its binding to the intended genomic site, while avoiding binding to undesired sites with similar sequences in the genome of the organism of interest (off-targets). Due to the popularity of this methodology and the rapid pace at which it evolves and changes, new computational tools show up constantly.

View Article and Find Full Text PDF

Background: Retroviruses transcribe messenger RNA for the overlapping Gag and Gag-Pol polyproteins, by using a programmed -1 ribosomal frameshift which requires a slippery sequence and an immediate downstream stem-loop secondary structure, together called frameshift stimulating signal (FSS). It follows that the molecular evolution of this genomic region of HIV-1 is highly constrained, since the retroviral genome must contain a slippery sequence (sequence constraint), code appropriate peptides in reading frames 0 and 1 (coding requirements), and form a thermodynamically stable stem-loop secondary structure (structure requirement).

Results: We describe a unique computational tool, RNAsampleCDS, designed to compute the number of RNA sequences that code two (or more) peptides p,q in overlapping reading frames, that are identical (or have BLOSUM/PAM similarity that exceeds a user-specified value) to the input peptides p,q.

View Article and Find Full Text PDF

Background: RNA inverse folding is the problem of finding one or more sequences that fold into a user-specified target structure s , i.e. whose minimum free energy secondary structure is identical to the target s .

View Article and Find Full Text PDF

Motivation: RNA thermometers (RNATs) are cis-regulatory elements that change secondary structure upon temperature shift. Often involved in the regulation of heat shock, cold shock and virulence genes, RNATs constitute an interesting potential resource in synthetic biology, where engineered RNATs could prove to be useful tools in biosensors and conditional gene regulation.

Results: Solving the 2-temperature inverse folding problem is critical for RNAT engineering.

View Article and Find Full Text PDF

The function of Internal Ribosome Entry Site (IRES) elements is intimately linked to their RNA structure. Viral IRES elements are organized in modular domains consisting of one or more stem-loops that harbor conserved RNA motifs critical for internal initiation of translation. A conserved motif is the pyrimidine-tract located upstream of the functional initiation codon in type I and II picornavirus IRES.

View Article and Find Full Text PDF

Conformational entropy for atomic-level, three dimensional biomolecules is known experimentally to play an important role in protein-ligand discrimination, yet reliable computation of entropy remains a difficult problem. Here we describe the first two accurate and efficient algorithms to compute the conformational entropy for RNA secondary structures, with respect to the Turner energy model, where free energy parameters are determined from UV absorption experiments. An algorithm to compute the derivational entropy for RNA secondary structures had previously been introduced, using stochastic context free grammars (SCFGs).

View Article and Find Full Text PDF

Determining the residues that are important for the molecular activity of a protein is a topic of broad interest in biomedicine and biotechnology. This knowledge can help understanding the protein's molecular mechanism as well as to fine-tune its natural function eventually with biotechnological or therapeutic implications. Some of the protein residues are essential for the function common to all members of a family of proteins, while others explain the particular specificities of certain subfamilies (like binding on different substrates or cofactors and distinct binding affinities).

View Article and Find Full Text PDF

Unlabelled: Several algorithms for RNA inverse folding have been used to design synthetic riboswitches, ribozymes and thermoswitches, whose activity has been experimentally validated. The RNAiFold software is unique among approaches for inverse folding in that (exhaustive) constraint programming is used instead of heuristic methods. For that reason, RNAiFold can generate all sequences that fold into the target structure or determine that there is no solution.

View Article and Find Full Text PDF

Nanotechnology and synthetic biology currently constitute one of the most innovative, interdisciplinary fields of research, poised to radically transform society in the 21st century. This paper concerns the synthetic design of ribonucleic acid molecules, using our recent algorithm, RNAiFold, which can determine all RNA sequences whose minimum free energy secondary structure is a user-specified target structure. Using RNAiFold, we design ten cis-cleaving hammerhead ribozymes, all of which are shown to be functional by a cleavage assay.

View Article and Find Full Text PDF

To some extent contradicting the classical paradigm of the relationship between protein 3D structure and function, now it is clear that large portions of the proteomes, especially in higher organisms, lack a fixed structure and still perform very important functions. Proteins completely or partially unstructured in their native (functional) form are involved in key cellular processes underlain by complex networks of protein interactions. The intrinsic conformational flexibility of these disordered proteins allows them to bind multiple partners in transient interactions of high specificity and low affinity.

View Article and Find Full Text PDF

Synthetic biology and nanotechnology are poised to make revolutionary contributions to the 21st century. In this article, we describe a new web server to support in silico RNA molecular design. Given an input target RNA secondary structure, together with optional constraints, such as requiring GC-content to lie within a certain range, requiring the number of strong (GC), weak (AU) and wobble (GU) base pairs to lie in a certain range, the RNAiFold web server determines one or more RNA sequences, whose minimum free-energy secondary structure is the target structure.

View Article and Find Full Text PDF

Synthetic biology is a rapidly emerging discipline with long-term ramifications that range from single-molecule detection within cells to the creation of synthetic genomes and novel life forms. Truly phenomenal results have been obtained by pioneering groups--for instance, the combinatorial synthesis of genetic networks, genome synthesis using BioBricks, and hybridization chain reaction (HCR), in which stable DNA monomers assemble only upon exposure to a target DNA fragment, biomolecular self-assembly pathways, etc. Such work strongly suggests that nanotechnology and synthetic biology together seem poised to constitute the most transformative development of the 21st century.

View Article and Find Full Text PDF

Intrinsically disordered proteins/regions (IDPs/IDRs) are currently recognized as a widespread phenomenon having key cellular functions. Still, many aspects of the function of these proteins need to be unveiled. IDPs conformational flexibility allows them to recognize and interact with multiple partners, and confers them larger interaction surfaces that may increase interaction speed.

View Article and Find Full Text PDF

Unlabelled: We have implemented in a single package all the features required for extracting, visualizing and manipulating fully conserved positions as well as those with a family-dependent conservation pattern in multiple sequence alignments. The program allows, among other things, to run different methods for extracting these positions, combine the results and visualize them in protein 3D structures and sequence spaces.

Availability And Implementation: JDet is a multiplatform application written in Java.

View Article and Find Full Text PDF