Although the discovery of glycogen in the liver, attributed to Claude Bernard, happened more than 160 years ago, the mechanism involved in the initiation of glucose polymerization remained unknown. The discovery of glycogenin at the core of glycogen's structure and the initiation of its glucopolymerization is among one of the most exciting and relatively recent findings in Biochemistry. This review focuses on the initial steps leading to the seminal discoveries of proteoglycogen and glycogenin at the beginning of the 1980s, which paved the way for subsequent foundational breakthroughs that propelled forward this new research field.
View Article and Find Full Text PDFTriosephosphate isomerase (TPI), the glycolytic enzyme that catalyzes the isomerization of dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (G3P), has been frequently identified as a target of S-nitrosylation by proteomic studies. However, the effect of S-nitrosylation on its activity has only been explored in plants and algae. Here, we describe the in vitro S-nitrosylation of human TPI (hTPI), and the effect of the modification on its enzymatic parameters.
View Article and Find Full Text PDFGlyceraldehyde-3-phosphate dehydrogenase's (GAPDH's) competitor of Siah Protein Enhances Life (GOSPEL) is the protein that competes with Siah1 for binding to GAPDH under NO-induced stress conditions preventing Siah1-bound GAPDH nuclear translocation and subsequent apoptosis. Under these conditions, GAPDH may also form amyloid-like aggregates proposed to be involved in cell death. Here, we report the in vitro enhancement by GOSPEL of NO-induced GAPDH aggregation resulting in the formation GOSPEL-GAPDH co-aggregates with some amyloid-like properties.
View Article and Find Full Text PDFThe X-ray structure of rabbit glycogenin containing the T82M (T83M according to previous authors amino acid numbering) mutation causing glycogenosis showed the loss of Thr82 hydrogen bond to Asp162, the residue involved in the activation step of the glucose transfer reaction mechanism. Autoglucosylation, maltoside transglucosylation and UDP-glucose hydrolyzing activities were abolished even though affinity and interactions with UDP-glucose and positioning of Tyr194 acceptor were conserved. Substitution of Thr82 for serine but not for valine restored the maximum extent of autoglucosylation as well as transglucosylation and UDP-glucose hydrolysis rate.
View Article and Find Full Text PDFInitiation of glucose polymerization by glycogenin autoglucosylation at Tyr-194 is required to prime de novo biosynthesis of glycogen. It has been proposed that the synthesis of the primer proceeds by intersubunit glucosylation of dimeric glycogenin, even though it has not been demonstrated that this mechanism is responsible for the described polymerization extent of 12 glucoses produced by the dimer. We reported previously the intramonomer glucosylation capability of glycogenin without determining the extent of autoglucopolymerization.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2008
Glycogenin initiates the biosynthesis of proteoglycogen, the mammalian glycogenin-bound glycogen, by intramolecular autoglucosylation. The incubation of glycogenin with UDP-glucose results in formation of a tyrosine-bound maltosaccharide, reaching maximum polymerization degree of 13 glucose units at cessation of the reaction. No exhaustion of the substrate donor occurred at the autoglucosylation end and the full autoglucosylated enzyme continued catalytically active for transglucosylation of the alternative substrate dodecyl-maltose.
View Article and Find Full Text PDFThe ability of monomeric glycogenin to autoglucosylate by an intramolecular mechanism of reaction is described using non-glucosylated and partially glucosylated recombinant glycogenin. We determined that monomer glycogenin exists in solution at concentration below 0.60-0.
View Article and Find Full Text PDFGlycogen is found in mammals and yeast bound to glycogenin forming proteoglycogen. The branched polysaccharide is joined to the protein through the C-chain, a maltosaccharide considered to be 13 glucose units long and double branched as the other branched glycogen B-chains. We described before the isolation of c-glycogenin, the debranched C-chain bound to glycogenin, from muscle proteoglycogen.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
April 2004
The lectin from the common edible mushroom Agaricus bisporus (ABL) belongs to the group of proteins that have the property of binding the Thomsen-Friedenreich antigen (T-antigen) selectively and with high affinity, but does not show any sequence similarity to the other proteins that share this property. The ABL sequence is instead similar to those of members of the saline-soluble fungal lectins, a protein family with pesticidal properties. The presence of different isoforms has been reported.
View Article and Find Full Text PDFBiochem Biophys Res Commun
June 2003
Proteoglycogen glycogenin is linked to the glucose residue of the C-chain reducing end of glycogen. We describe for the first time the release by isoamylase and isolation of C-chain-bound glycogenin (C-glycogenin) from proteoglycogen. The treatment of proteoglycogen with alpha-amylase releases monoglucosylated and diglucosylated glycogenin (a-glycogenin) which is able to autoglucosylate.
View Article and Find Full Text PDF