Molybdenum disulfide (MoS2), a semiconducting two-dimensional layered transition metal dichalcogenide (2D TMDC), with attractive properties enables the opening of a new electronics era beyond Si. However, the notoriously high contact resistance (RC) regardless of the electrode metal has been a major challenge in the practical applications of MoS2-based electronics. Moreover, it is difficult to lower RC because the conventional doping technique is unsuitable for MoS2 due to its ultrathin nature.
View Article and Find Full Text PDFAlthough non-aqueous lithium-ion batteries have a high gravimetric density, aqueous zinc-ion batteries (ZIBs) have recently been in the spotlight as an alternative, because ZIBs have characteristics such as high volumetric density, high ionic conductivity, eco-friendliness, low cost, and high safety. However, the improvement in electrochemical performance is limited due to insufficient rate capability and severe cycle fading of the vanadium-oxide-based cathode and zinc-metal-based anode material, which are frequently used as active materials for ZIBs. In addition, complex methods are required to prepare high-performance cathode and anode materials.
View Article and Find Full Text PDFNanoinks composed of quantum dots (QDs) are applied in light-receiving devices and light-emitting devices such as solar cells and displays. However, since the most widely used QDs, PbS and CdS, are toxic and environmentally concerning, alternative materials need to be developed. We synthesized and analyzed Ag chalcogenide nanoparticles, including AgBiS and AgS nanoparticles, which are eco-friendly materials.
View Article and Find Full Text PDFExpanded polystyrene (EPS), which is difficult to decompose, is usually buried or incinerated, causing the natural environment to be contaminated with microplastics and environmental hormones. Digestion of EPS by mealworms has been identified as a possible biological solution to the problem of pollution, but the complete degradation mechanism of EPS is not yet known. Intestinal microorganisms play a significant role in the degradation of EPS by mealworms, and relatively few other EPS degradation microorganisms are currently known.
View Article and Find Full Text PDFTransition metal chalcogenides (TMCs) are a large family of 2D materials with different properties, and are promising candidates for a wide range of applications such as nanoelectronics, sensors, energy conversion, and energy storage. In the research of new materials, the development and investigation of industry-compatible synthesis techniques is of key importance. In this respect, it is important to study 2D TMC materials synthesized by the atomic layer deposition (ALD) technique, which is widely applied in industries.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2019
Two-dimensional (2D) transition-metal dichalcogenides have attracted significant attention as gas-sensing materials owing to their superior responsivity at room temperature and their possible application as flexible electronic devices. Especially, reliable responsivity and selectivity for various environmentally harmful gases are the main requirements for the future chemiresistive-type gas sensor applications. In this study, we demonstrate improved sensitivity of a 2D MoS-based gas sensor by controlling the Schottky barrier height.
View Article and Find Full Text PDFCorrection for 'Textile-based high-performance hydrogen evolution of low-temperature atomic layer deposition of cobalt sulfide' by Jusang Park, Hyungjun Kim et al., Nanoscale, 2019, 11, 844-850.
View Article and Find Full Text PDFHydrogen is an appealing green energy resource to meet increasing energy demands. To produce hydrogen using the hydrogen evolution reaction (HER), platinum, an expensive and scarce metal, is commonly used and plays a crucial role in maximizing catalytic performance. Transition metal chalcogenides, especially cobalt sulfides (CoSx), are considered an alternative to platinum because of their electrochemical properties, for example, low Tafel slopes and overpotentials.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2018
Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have attracted considerable attention as promising building blocks for a new generation of gas-sensing devices because of their excellent electrical properties, superior response, flexibility, and low-power consumption. Owing to their large surface-to-volume ratio, various 2D TMDCs, such as MoS, MoSe, WS, and WSe, have exhibited excellent gas-sensing characteristics. However, exploration toward the enhancement of TMDC gas-sensing performance has not yet been intensively addressed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2018
Semiconducting two-dimensional transition-metal dichalcogenides are considered promising gas-sensing materials because of their large surface-to-volume ratio, excellent electrical conductivity, and susceptible surfaces. However, enhancement of the recovery performance has not yet been intensively explored. In this study, a large-area uniform WSe is synthesized for use in a high-performance semiconductor gas sensor.
View Article and Find Full Text PDFThe efficient synthesis of two-dimensional molybdenum disulfide (2D MoS2) at low temperatures is essential for use in flexible devices. In this study, 2D MoS2 was grown directly at a low temperature of 200 °C on both hard (SiO2) and soft substrates (polyimide (PI)) using chemical vapor deposition (CVD) with Mo(CO)6 and H2S. We investigated the effect of the growth temperature and Mo concentration on the layered growth by Raman spectroscopy and microscopy.
View Article and Find Full Text PDFThe effective synthesis of atomically thin molybdenum disulfides (MoS) of high quality and uniformity over a large area is essential for their use in electronic and optical devices. In this work, we synthesize MoS that exhibit a high quality and large area uniformity using chemical vapor deposition (CVD) with volatile S organic compound and NaCl catalysts. In the latter process, the NaCl enhances the growth rate (5 min for synthesis of monolayer MoS) and purity of the synthesized MoS.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2016
Deposition of high-k dielectrics on two-dimensional MoS is an important process for successful application of the transition-metal dichalcogenides in electronic devices. Here, we show the effect of HO reactant exposure on monolayer (1L) MoS during atomic layer deposition (ALD) of AlO. The results showed that the ALD-AlO caused degradation of the performance of 1L MoS field effect transistors (FETs) owing to the formation of Mo-O bonding and trapping of HO molecules at the AlO/MoS interface.
View Article and Find Full Text PDFSemiconducting two-dimensional (2D) transition metal dichalcogenides (TMDCs) are promising gas-sensing materials due to their large surface-to-volume ratio. However, their poor gas-sensing performance resulting from the low response, incomplete recovery, and insufficient selectivity hinders the realization of high-performance 2D TMDC gas sensors. Here, we demonstrate the improvement of gas-sensing performance of large-area tungsten disulfide (WS) nanosheets through surface functionalization using Ag nanowires (NWs).
View Article and Find Full Text PDFThis work reports the self-limiting synthesis of an atomically thin, two dimensional transition metal dichalcogenides (2D TMDCs) in the form of MoS2. The layer controllability and large area uniformity essential for electronic and optical device applications is achieved through atomic layer deposition in what is named self-limiting layer synthesis (SLS); a process in which the number of layers is determined by temperature rather than process cycles due to the chemically inactive nature of 2D MoS2. Through spectroscopic and microscopic investigation it is demonstrated that SLS is capable of producing MoS2 with a wafer-scale (~10 cm) layer-number uniformity of more than 90%, which when used as the active layer in a top-gated field-effect transistor, produces an on/off ratio as high as 10(8).
View Article and Find Full Text PDFThe effective synthesis of two-dimensional transition metal dichalcogenides alloy is essential for successful application in electronic and optical devices based on a tunable band gap. Here we show a synthesis process for Mo1-xWxS2 alloy using sulfurization of super-cycle atomic layer deposition Mo1-xWxOy. Various spectroscopic and microscopic results indicate that the synthesized Mo1-xWxS2 alloys have complete mixing of Mo and W atoms and tunable band gap by systematically controlled composition and layer number.
View Article and Find Full Text PDFThe synthesis of layered transition-metal-disulfide (MS2, M = Mo, W) nanosheets with layer controllability and large-area uniformity is an essential requirement for their application in electronic and optical devices. In this report, we describe a synthesis process of WS2 nanosheets with layer controllability and high uniformity using chemical vapor deposition (CVD) and WCl6 and H2S as gas-phase precursors. Through this process, we can systematically modulate the thickness of WS2 nanosheets by controlling the duration of the reaction between WCl6 and H2S.
View Article and Find Full Text PDFA useful strategy has been developed to fabricate carbon-nanotube-nickel (CNT-Ni) nanocomposites through atomic layer deposition (ALD) of Ni and chemical vapor deposition (CVD) of functionalized CNTs. Various techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), were used to characterize the morphology and the structure of as-prepared samples. It was confirmed that the products possess uniform Ni nanoparticles that are constructed by finely controlled deposition of Ni onto oxygen or bromine functionalized CNT surface.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2014
Without introducing defects in the monolayer of carbon lattice, the deposition of high-κ dielectric material is a significant challenge because of the difficulty of high-quality oxide nucleation on graphene. Previous investigations of the deposition of high-κ dielectrics on graphene have often reported significant degradation of the electrical properties of graphene. In this study, we report a new way to integrate high-κ dielectrics with graphene by transferring a high-κ dielectric nanosheet onto graphene.
View Article and Find Full Text PDFThe synthesis of atomically thin transition-metal disulfides (MS2) with layer controllability and large-area uniformity is an essential requirement for their application in electronic and optical devices. In this work, we describe a process for the synthesis of WS2 nanosheets through the sulfurization of an atomic layer deposition (ALD) WO3 film with systematic layer controllability and wafer-level uniformity. The X-ray photoemission spectroscopy, Raman, and photoluminescence measurements exhibit that the ALD-based WS2 nanosheets have good stoichiometry, clear Raman shift, and bandgap dependence as a function of the number of layers.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2013
We report the fabrication of graphene-encapsulated nanoballs with copper nanoparticle (Cu NP) cores whose size range from 40 nm to 1 μm using a solid carbon source of poly(methyl methacrylate) (PMMA). The Cu NPs were prone to agglomerate during the annealing process at high temperatures of 800 to 900 °C when gas carbon source such as methane was used for the growth of graphene. On the contrary, the morphologies of the Cu NPs were unchanged during the growth of graphene at the same temperature range when PMMA coating was used.
View Article and Find Full Text PDFCystic fibrosis transmembrane conductance regulator (CFTR) has been considered to be involved in the regulatory pathway of biliary mucin secretion. We investigated expression of CFTR protein and mRNA in 24 livers with hepatolithiasis, in 6 with cholangiocarcinoma, and in 12 histologically normal livers. According to the histologic features of chronic proliferative cholangitis, hepatolithiasis was subdivided into inflammatory cell infiltration predominant (N = 14) and fibrosis predominant (N = 10).
View Article and Find Full Text PDF