Unlabelled: Microbiota-released extracellular vesicles (MEVs) have emerged as a key player in intercellular signaling. However, their involvement in the gut-brain axis has been poorly investigated. We hypothesize that MEVs cross host cellular barriers and deliver their cargoes of bioactive compounds to the brain.
View Article and Find Full Text PDFThe continuous growth of aquaculture places a growing demand on alternative sources of fish oil (FO). Certain microorganisms provide a sustainable replacement for FO due to their content of EPA and DHA, which are essential for fish health. Appreciable evidence shows that changes in feeding sources may alter the nutritional components of salmon; however, the influence of diets on lipid species remains unclear.
View Article and Find Full Text PDFAntioxidants (Basel)
October 2023
Extracellular vesicles (EVs) are membrane-bound organelles that are generally released by eukaryotic cells and enclose various cellular metabolic information, such as RNA, meta-proteins, and versatile metabolites. The physiological properties and diverse functions of food-derived EVs have been extensively elucidated, along with a recent explosive upsurge in EV research. Therefore, a concise review of the health effects of food-derived EVs is necessary.
View Article and Find Full Text PDFWith the current advancement in mass spectrometry (MS)-based lipidomics, the knowledge of lipidomes and their diverse roles has greatly increased, enabling a deeper understanding of the action of bioactive lipid molecules in plant- and animal-based foods. This review provides in-depth information on the practical use of MS techniques in lipidomics, including lipid extraction, adduct formation, MS analysis, data processing, statistical analysis, and bioinformatics. Moreover, this contribution demonstrates the effectiveness of MS-based lipidomics for identifying and quantifying diverse lipid species, especially triacylglycerols and phospholipids, in foods.
View Article and Find Full Text PDFThe behavior of gut microbiota is closely involved in sustaining balanced immune and metabolic homeostasis, and the dysbiosis of gut microbiota can lead to severe disease. Foods and dietary patterns are the primary drivers in shaping/designing gut microbiota compositions and their metabolites across the lifetime. This indicates the importance of functional molecules present in the food matrix in the life of gut microbiota and their influence on the host's biological system.
View Article and Find Full Text PDFFront Microbiol
January 2023
The concept of the gut microbiome is emerging as a metabolic interactome influenced by diet, xenobiotics, genetics, and other environmental factors that affect the host's absorption of nutrients, metabolism, and immune system. Beyond nutrient digestion and production, the gut microbiome also functions as personalized polypharmacy, where bioactive metabolites that our microbes excrete or conjugate may reach systemic circulation and impact all organs, including the brain. Appreciable evidence shows that gut microbiota produce diverse neuroactive metabolites, particularly neurotransmitters (and their precursors), stimulating the local nervous system (i.
View Article and Find Full Text PDFSea cucumber processing discards, which include mainly internal organs, represent up to 50% of the sea cucumber biomass, and are a rich source of bioactive compounds, including phenolics. This work aimed to extract free, esterified, and insoluble-bound phenolics from the internal organs of the Atlantic sea cucumber () using high-pressure processing (HPP) pre-treatment. The sea cucumber internal organs were subjected to HPP (6000 bar for 10 min), followed by the extraction and characterization of phenolics.
View Article and Find Full Text PDFFermentation is an effective non-thermal food processing operation used for enhancing the nutritional and functional properties of food. HPLC-ESI-MS/MS analysis and inhibitory capacity of the soluble- and insoluble-bound phenolics in lentil hulls in retarding the oxidation of LDL and DNA strand scission were determined following fermentation. In HPLC-ESI-MS/MS analysis, most insoluble-bound phenolics in lentil hulls were significantly decreased, indicating their liberation from the cell wall matrix upon fermentation.
View Article and Find Full Text PDFThe soluble and insoluble-bound phenolic fractions of hull, whole, and dehulled black and green lentil extracts were identified and quantified using electrospray ionization (ESI)-MS/MS. Several in vitro antioxidant tests and inhibition of DNA strand scission were conducted to assess different pathways of activity. The most abundant phenolics in the soluble fractions were caffeic acid (412.
View Article and Find Full Text PDFThe oxidation of human low-density-lipoprotein (LDL) particles is responsible for the development of cardiovascular diseases (CVDs). In the present study, the occurrence of riboflavin-sensitized photooxidation of LDL particles was examined in an system. The presence of light, oxygen, and photosensitizer (50 μM riboflavin) caused the riboflavin-sensitized photooxidation of human LDL particles thereby increasing in the conjugated dienes (CDs) by 32.
View Article and Find Full Text PDFShotgun lipidomics was applied to identify and quantify phospholipids (PLs) in salmon muscle tissue by focusing on the distribution of ω-3 fatty acids (e.g., docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)) in the form of phospholipids, as well as to identify and quantify eicosanoids, which has not yet been attempted in Atlantic salmon muscle.
View Article and Find Full Text PDFIdentification and quantification of triacylglycerols (TAGs) in salmon muscle tissue were conducted using electrospray ionization (ESI)-MS/MS in a triple quadrupole mass spectrometer. The confirmation of three fatty acid moieties of individual TAGs was determined using the multiple neutral loss (NL) scanning mode. A total of 98 TAGs were identified, and the predominant TAG species were 16:0-18:0-20:5 (10.
View Article and Find Full Text PDFThe identification and quantification of soluble- and insoluble-bound phenolics in lentil hulls were studied using HPLC-DAD-ESI-MS and their antioxidant potential determined using DPPH radical scavenging ability (DRSA), reducing power (RP), and hydroxyl radical scavenging ability (HRSA) assays to test their electron and hydrogen donating abilities. A number of soluble phenolics such as phenolic acids, flavonoids, and proanthocyanidins were found, which lead to the remarkable antioxidant potential as reflected in DRSA, RP, and HRSA. Meanwhile, insoluble-bound phenolics displayed a relatively lower number of peaks and contents than their corresponding soluble phenolics, leading to a lower antioxidant potential than that of soluble phenolics.
View Article and Find Full Text PDFJ Agric Food Chem
July 2019
A limitation of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability (DRSA) due to the presence of pigments and colors in the extracts of plant-based foods was addressed. The pigments present in the test samples absorb in the same wavelength region as the DPPH radicals; this interferes with the elaborate absorbance readings of the DPPH radicals. In this contribution, electron paramagnetic resonance (EPR) spectroscopy for DPPH assay is proposed in order to avoid this limitation.
View Article and Find Full Text PDFPhenolics, which are secondary metabolites of plants, exhibit remarkable bioactivities. In this contribution, we have focused on their protective effect against chronic diseases rather than their antioxidant activities, which have been widely discussed in the literature. A large body of epidemiological studies has proven the bioactivities of phenolics in both standard compounds and natural extracts: namely, anticancer, anti-inflammatory, and antibacterial activities as well as reducing diabetes, cardiovascular disease, and neurodegenerative disease.
View Article and Find Full Text PDFThis contribution provides a review of the topic of insoluble-bound phenolics, especially their localization, synthesis, transfer and formation in plant cells, as well as their metabolism in the human digestive system and corresponding bioactivities. In addition, their release from the food matrix during food processing and extraction methods are discussed. The synthesis of phenolics takes place mainly at the endoplasmic reticulum and they are then transferred to each organ through transport proteins such as the ATP-binding cassette (ABC) and multidrug and toxic compound extrusion (MATE) transporter at the organ's compartment membrane or via transport vesicles such as cytoplasmic and Golgi vesicles, leading to the formation of soluble and insoluble-bound phenolics at the vacuole and cell wall matrix, respectively.
View Article and Find Full Text PDFA new indicator, the ratio of insoluble bound phenolics (IBPs) to soluble phenolics (SPs), is suggested as an effective means to monitor changes in the antioxidant activity of lentils during germination. This indicator may be used to monitor other process-induced changes in antioxidant potential of food phenolics in other foods. The antioxidant activity of SPs, IBPs, and total value, the sum of both free and esterified phenolics, of germinated CDC Richlea lentil variety was evaluated for 4 days.
View Article and Find Full Text PDFThe degree of highly oxidised lipids was determined by a modified method using profile changes of fatty acids in lard and soybean oil heated at 180°C. The usefulness of the modified method was compared through conjugated dienoic acid (CDA) and/or p-anisidine value (p-AV) methods. Absolute values, which were expressed as equivalent to an internal standard (C11:0), of both unsaturated fatty acids (UFAs) and saturated fatty acids (SFAs) decreased significantly during thermal oxidation (p<0.
View Article and Find Full Text PDFHeadspace volatiles of sesame oil (SO) from sesame seeds roasted at 9 different conditions were analyzed by a combination of solid phase microextraction (SPME)-gas chromatography/mass spectrometry (GC/MS), electronic nose/metal oxide sensors (MOS), and electronic nose/MS. As roasting temperature increased from 213 to 247 °C, total headspace volatiles and pyrazines increased significantly (P < 0.05).
View Article and Find Full Text PDFPhotosensitized compounds from daidzein were studied in a riboflavin model system under visible light irradiation by high-performance liquid chromatography (HPLC). As the period of light irradiation increased, concentration of daidzein decreased significantly (P < 0.05) and new peaks of daidzein derivatives were observed and changed during photosensitization.
View Article and Find Full Text PDF