Publications by authors named "Ju-fang Huang"

Phosphatase and tensin homologue deleted on chromosome ten (PTEN) was initially recognized as a significant regulator of cancer suppression and could impede cancer cell survival, proliferation, and energy metabolism. PTEN is highly expressed in neurons and performs crucial functions in neurogenesis, synaptogenesis, and neuronal survival. Disruption of PTEN activity may also result in abnormal neuronal function and is associated with various neurological disorders, including stroke, seizures, and autism.

View Article and Find Full Text PDF

Adipose mesenchymal stem cells (ADSCs) have protective effects against glutamate-induced excitotoxicity, but ADSCs are limited in use for treatment of optic nerve injury. Studies have shown that the extracellular vesicles (EVs) secreted by ADSCs (ADSC-EVs) not only have the function of ADSCs, but also have unique advantages including non-immunogenicity, low probability of abnormal growth, and easy access to target cells. In the present study, we showed that intravitreal injection of ADSC-EVs substantially reduced glutamate-induced damage to retinal morphology and electroretinography.

View Article and Find Full Text PDF

Ischemia/reperfusion (I/R) injury is one of the most common etiologies in many diseases. Retinal I/R leads to cytokine storm, resulting in tissue damage and cell death. Pyroptosis, a novel type of regulated cell death, occurs after cellular I/R injury.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is one of the high incidence cancers and third leading cause of cancer-related mortality. HBV is the top most risk factor accounting for 50-80% of the HCC cases. Kinases: Aurora kinase A (AURKA), cyclin-dependent kinase (CDK1) and Polo-like kinase 1 (PLK1), the key regulators of cell mitosis are overexpressed in varieties of cancers including HCC.

View Article and Find Full Text PDF

Glaucoma is a common blinding eye disease characterized by progressive loss of retinal ganglion cells (RGCs) and their axons, progressive loss of visual field, and optic nerve atrophy. Autophagy plays a pivotal role in the pathophysiology of glaucoma and is closely related to its pathogenesis. Targeting autophagy and blocking the apoptosis of RGCs provides emerging guidance for the treatment of glaucoma.

View Article and Find Full Text PDF

Objective: Numerous studies have indicated that excitatory amino acid toxicity, such as glutamate toxicity, is involved in glaucoma. In addition, excessive glutamate can lead to an intracellular calcium overload, resulting in regulated necrosis. Our previous studies have found that the calpastatin (CAST)-calpain pathway plays an important role in retinal neuron-regulated necrosis after glutamate injury.

View Article and Find Full Text PDF

Aim: To clarify the role of inducible nitric oxide synthase (iNOS) in blood-retinal barrier (BRB) injury after acute high intraocular pressure (IOP) in rats.

Methods: Forty-two Sprague-Dawley (SD) rats were randomized into 7 groups [control (Cont), 3, 6, 12, 24, 48, and 72h, =6]. Except Cont group, other groups' retina tissue was obtained at corresponding time points after a model of acute high IOP have been established in rats.

View Article and Find Full Text PDF

Cerebral ischemic stroke (CIS) is a common and frequently occurring disease with high morbidity, disability and mortality. In the present paper, we reviewed the progress of studies on the underlying mechanisms of acupuncture in the treatment of CIS in recent years. It is found that acupuncture induced amelioration of symptoms of CIS is closely related to its functions in 1) inhibiting neuroinflammation, 2) reducing oxidative stress, 3) lowering excitatory amino acid toxicity, 4) resisting neuronal apoptosis, 5) regulating cellular autophagy, 6) promoting neuronal regeneration and repair, 7) facilitating vascular remodeling, 8) regulating cerebrovascular reserve, 9) adjusting brain metabolism, and 10) maintaining the integrity of blood-brain barrier.

View Article and Find Full Text PDF

Background: Recently, multiple studies have suggested an association between gut dysbiosis and allergic rhinitis (AR) development. However, the role of gut microbiota in AR development remains obscure.

Methods: The goal of this study was to compare the gut microbiota composition and short-chain fatty acid (SCFAs) differences associated with AR (N = 18) and HCs (healthy controls, N = 17).

View Article and Find Full Text PDF

Mesenchymal stem cells play an important role in tissue damage and repair. This role is mainly due to a paracrine mechanism, and extracellular vesicles (EVs) are an important part of the paracrine function. EVs play a vital role in many aspects of cell homeostasis, physiology, and pathology, and EVs can be used as clinical biomarkers, vaccines, or drug delivery vehicles.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) contain specific proteins, lipids, and nucleic acids that can be passed to other cells as signal molecules to alter their function. However, there are many problems and challenges in the conversion and clinical application of EVs. Storage and protection of EVs is one of the issues that need further research.

View Article and Find Full Text PDF

Background: Osteosarcoma (OS) is one of the most difficult cancers to treat due to its resistance to chemotherapy. The essential role played by Mcl-1 in promoting chemoresistance has been observed in a variety of cancers, including OS, while the underlying mechanism remains unclear.

Methods: We investigated the expression of Mcl-1 in 42 paired OS specimens obtained before and after adjuvant chemotherapy, and its correlation with clinicopathological characteristics.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) play a key role in the pathogenesis and development of glaucoma. The present study aims to investigate the underlying mechanism of long noncoding RNA growth arrest-specific transcript 5 (GAS5) in glaucoma development through regulating the apoptosis of RGCs. Rat models of chronic glaucoma were successfully established by translimbal laser photocoagulation.

View Article and Find Full Text PDF

The Mawangdui tomb No.1 cadaver, a female corpse from the Western Han Dynasty, was unearthed in 1972. Forensic examination at the time of discovery indicated fairly remarkable presence of bodily constituents at the anatomical, histological, and molecular levels.

View Article and Find Full Text PDF

In 1972, an enormous tomb site was found in the eastern suburb of Changsha, the capital city of Hunan Province, which led to the discovery of Mawangdui tomb No. 1, and soon thereafter tombs Nos. 2 and 3.

View Article and Find Full Text PDF

Ancient human remains may exist as intact cadavers in various forms, including mummies as well as humid or soft corpses. These valuable human depositories have been increasingly investigated with modern molecular biological approaches, delivering breakthrough discoveries in the field of paleoanthropology. Many ancient remains are also preserved in museums for public education of the history of human civilization.

View Article and Find Full Text PDF

This review briefly introduces the mechanism and detection methods of necroptosis in recent years. The most significant points of this review focus on the involvement of necroptotic proteins in disease progression. The following aspects are summarized: 1) RIPs, MLKL, and the upstream and downstream molecules that mediate necroptosis; 2) The development of detection methods for necroptosis; 3) The involvement of related necroptotic proteins in diverse diseases etiology; and 4) The application of necroptotic proteins in disease diagnosis.

View Article and Find Full Text PDF

Objectives: We have explored a better method to preserve and store human medically amputated large size samples. The approach involved developing a special embalming solution and procedures for biopreservation and biostorage of a large-sized sample as a whole specimen rather than dissected small parts. Evaluation of the effect of our special embalming solution and procedures on whole human amputated extremities compared with excised small tissues was conducted.

View Article and Find Full Text PDF

Necroptosis is programmed necrosis, a process which has been studied for over a decade. The most common accepted mechanism is through the RIP1-RIP3-MLKL axis to regulate necroptotic cell death. As a result of previous studies on necroptosis, positive regulation for promoting necroptosis such as HSP90 stabilization and hyperactivation of TAK1 on RIP1 is clear.

View Article and Find Full Text PDF

Heat shock protein 90α (HSP90α) maintains cell stabilization and regulates cell death, respectively. Recent studies have shown that HSP90α is involved in receptor interacting protein 3 (RIP3)-mediated necroptosis in HT29 cells. It is known that oxygen and glucose deprivation (OGD) can induce necroptosis, which is regulated by RIP3 in neurons.

View Article and Find Full Text PDF

The purpose of this study was to investigate the effect of inhibition of calpain on retinal ganglion cell-5 (RGC-5) necroptosis following oxygen glucose deprivation (OGD). RGC-5 cells were cultured in Dulbecco's-modified essential medium and necroptosis was induced by 8-h OGD. PI staining and flow cytometry were performed to detect RGC-5 necrosis.

View Article and Find Full Text PDF

N-acetyl-leucyl-leucyl-norleucinal (ALLN), an inhibitor of proteasomes and calpain, is widely used to reduce proteasomes or calpain-mediated cell death in rodents. However, ALLN is toxic to retinal neurons to some extent. At the concentration of 10 μM, ALLN is non-toxic to cortical neurons, but induces cell death of retinal neurons in vitro.

View Article and Find Full Text PDF

Because of a lack of sensitive biomarkers, the diagnosis of Alzheimer's disease (AD) cannot be made prior to symptom manifestation. Therefore, it is crucial to identify novel biomarkers for the presymptomatic diagnosis of AD. While brain lesions are a major feature of AD, retinal pathological changes also occur in patients.

View Article and Find Full Text PDF
Article Synopsis
  • - The study aims to develop a more accurate finite element model (FEM) of the eyeball to analyze stress changes in the eye, particularly affecting the lamina cribrosa and retinal ganglion cells, under various levels of increased intraocular pressure (IOP).
  • - Methods involved measuring and stretching scleral and corneal strips, using biomechanical instruments, and performing 3-D imaging of bovine eyes to create a realistic eye model for simulations.
  • - Results included establishing material properties that better mimic physiological conditions and creating a realistic FEM that accounts for complex mechanical behavior under different IOP scenarios.
View Article and Find Full Text PDF

Background: Necroptosis is a type of regulated form of cell death that has been implicated in the pathogenesis of various diseases. Receptor-interacting protein 3 (RIP3), a member of the RIP family of proteins, has been reported as an important necroptotic pathway mediator in regulating a variety of human diseases, such as myocardial ischemia, inflammatory bowel disease, and ischemic brain injury. Our previous study showed that RIP3 was expressed in rat retinal ganglion cells (RGCs), where it was significantly upregulated during the early stage of acute high intraocular pressure.

View Article and Find Full Text PDF