Publications by authors named "Ju-Hee Ryu"

In recent years, notable advances in nanotechnology-based drug delivery have emerged. A particularly promising platform in this field is DNA origami-based nanoparticles, which offer highly programmable surfaces, providing precise control over the nanoscale spacing and stoichiometry of various cargo. These versatile particles are finding diverse applications ranging from basic molecular biology to diagnostics and therapeutics.

View Article and Find Full Text PDF

In recent years, notable advances in nanotechnology-based drug delivery have emerged. A particularly promising platform in this field is DNA origami-based nanoparticles, which offer highly programmable surfaces, providing precise control over the nanoscale spacing and stoichiometry of various cargo. These versatile particles are finding diverse applications ranging from basic molecular biology to diagnostics and therapeutics.

View Article and Find Full Text PDF

Copper-based nanomaterials have been employed as therapeutic agents for cancer therapy and diagnosis. Nevertheless, persistent challenges, such as cellular toxicity, non-uniform sizes, and low photothermal efficiency, often constrain their applications. In this study, we present Cu-loaded silica nanoparticles fabricated through the chelation of Cu ions by silanol groups.

View Article and Find Full Text PDF

Cancer immunotherapy represents a revolutionary strategy, leveraging the patient's immune system to inhibit tumor growth and alleviate the immunosuppressive effects of the tumor microenvironment (TME). The recent emergence of immune checkpoint blockade (ICB) therapies, particularly following the first approval of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors like ipilimumab, has led to significant growth in cancer immunotherapy. The extensive explorations on diverse immune checkpoint antibodies have broadened the therapeutic scope for various malignancies.

View Article and Find Full Text PDF

Multivalent presentation of ligands often enhances receptor activation and downstream signalling. DNA origami offers a precise nanoscale spacing of ligands, a potentially useful feature for therapeutic nanoparticles. Here we use a square-block DNA origami platform to explore the importance of the spacing of CpG oligonucleotides.

View Article and Find Full Text PDF

Current SARS-CoV-2 vaccines have demonstrated robust induction of neutralizing antibodies and CD4 T cell activation, however CD8 responses are variable, and the duration of immunity and protection against variants are limited. Here we repurposed our DNA origami vaccine platform, DoriVac, for targeting infectious viruses, namely SARS-CoV-2, HIV, and Ebola. The DNA origami nanoparticle, conjugated with infectious-disease-specific HR2 peptides, which act as highly conserved antigens, and CpG adjuvant at precise nanoscale spacing, induced neutralizing antibodies, Th1 CD4 T cells, and CD8 T cells in naïve mice, with significant improvement over a bolus control.

View Article and Find Full Text PDF

Anti-epidermal growth factor receptor (EGFR) antibody, cetuximab, therapy has significantly improved the clinical outcomes of patients with colorectal cancer, but the response to cetuximab can vary widely among individuals. We thus need strategies for predicting the response to this therapy. However, the current methods are unsatisfactory in their predictive power.

View Article and Find Full Text PDF

Interactions of various ligands and receptors have been extensively investigated because they regulate a series of signal transduction leading to various functional cellular outcomes. The receptors on cell membrane recognize their specific ligands, resulting in specific binding between ligands and receptors. Accumulating evidence reveals that the receptors recognize the difference on the spatial characteristics of ligands as well as the types of ligands.

View Article and Find Full Text PDF

Background: Cryopyrin-associated periodic syndrome (CAPS) is an inherited autoinflammatory disease caused by a gain-of-function mutation in NLRP3. Although CAPS patients frequently suffer from sensorineural hearing loss, it remains unclear whether CAPS-associated mutation in NLRP3 is associated with the progression of hearing loss.

Methods: We generated a mice with conditional expression of CAPS-associated NLRP3 mutant (D301N) in cochlea-resident CX3CR1 macrophages and examined the susceptibility of CAPS mice to inflammation-mediated hearing loss in a local and systemic inflammation context.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD) is an important cofactor in many redox and non-redox NAD-consuming enzyme reactions. Intracellular NAD level steadily declines with age, but its role in the innate immune potential of myeloid cells remains elusive. In this study, we explored whether NAD depletion by FK866, a highly specific inhibitor of the NAD salvage pathway, can affect pattern recognition receptor-mediated responses in macrophages.

View Article and Find Full Text PDF

Pancreatic cancer is one of the most lethal forms of cancer, predicted to be the second leading cause of cancer-associated death by 2025. Despite intensive research for effective treatment strategies and novel anticancer drugs over the past decade, the overall patient survival rate remains low. RNA interference (RNAi) is capable of interfering with expression of specific genes and has emerged as a promising approach for pancreatic cancer because genetic aberrations and dysregulated signaling are the drivers for tumor formation and the stromal barrier to conventional therapy.

View Article and Find Full Text PDF
Article Synopsis
  • * The study proposes using gold nanoparticles modified with LOX-sensitive peptides (LS-AuNPs) that change color when exposed to LOX, allowing for easy detection.
  • * The LS-AuNPs provide a more sensitive detection method for LOX compared to traditional assays, and could help predict tumor stiffness and resistance to cancer drugs.
View Article and Find Full Text PDF

The effective chemotherapeutic drug, doxorubicin (DOX), elicits immunogenic cell death (ICD) and additional anticancer immune responses during chemotherapy. However, it also induces severe side effects and systemic immunosuppression, hampering its wide clinical application. Herein, we constructed cancer-activated DOX prodrug by conjugating the cathepsin B-cleavable peptide (Phe-Arg-Arg-Gly, FRRG) to a doxorubicin (DOX), resulting in FRRG-DOX that self-assembled into cancer-activated DOX prodrug nanoparticles (CAP-NPs).

View Article and Find Full Text PDF

Rosacea is a chronic inflammatory skin disease characterized by immune response-dependent erythema and pustules. Although the precise etiology of rosacea remains elusive, its pathogenesis is reportedly associated with an increased level of antimicrobial peptide LL-37. However, molecular mechanisms underlying the progression of rosacea via LL-37 remain poorly understood.

View Article and Find Full Text PDF

Nanomedicine is extensively employed for cancer treatment owing to its unique advantages over conventional drugs and imaging agents. This increased attention to nanomedicine, however, has not fully translated into clinical utilization and patient benefits due to issues associated with reticuloendothelial system clearance, tumor heterogeneity, and complexity of the tumor microenvironment. To address these challenges, efforts are being made to modify the design of nanomedicines, including optimization of their physiochemical properties, active targeting, and response to stimuli, but these studies are often performed independently.

View Article and Find Full Text PDF

One of the most promising approaches for the treatment of colorectal cancer is targeting epidermal growth factor receptor (EGFR). Comprehensive research has led to significant clinical outcomes using EGFR-targeted anticancer drugs; however, the response to these drugs still largely varies among individuals. The current diagnostic platform provides limited information that does not enable successful prediction of the anticancer performance of EGFR-targeted drugs.

View Article and Find Full Text PDF

Cancer immunotherapies, including adoptive T cell transfer and immune checkpoint blockades, have recently shown considerable success in cancer treatment. Nevertheless, transferred T cells often become exhausted because of the immunosuppressive tumor microenvironment. Immune checkpoint blockades, in contrast, can reinvigorate the exhausted T cells; however, the therapeutic efficacy is modest in 70-80% of patients.

View Article and Find Full Text PDF

Exosomes and extracellular nanovesicles (NV) derived from mesenchymal stem cells (MSC) may be used for the treatment of ischemic stroke owing to their multifaceted therapeutic benefits that include the induction of angiogenesis, anti-apoptosis, and anti-inflammation. However, the most serious drawback of using exosomes and NV for ischemic stroke is the poor targeting on the ischemic lesion of brain after systemic administration, thereby yielding a poor therapeutic outcome. In this study, we show that magnetic NV (MNV) derived from iron oxide nanoparticles (IONP)-harboring MSC can drastically improve the ischemic-lesion targeting and the therapeutic outcome.

View Article and Find Full Text PDF

The phosphoinositide 3-kinase (PI3K) and RAS signaling pathways are frequently co-activated and altered during oncogenesis. Owing to their regulatory cross-talk, the early attempts of targeting only one pathway have mostly ended up promoting the development of drug resistance. Here, we propose using small interfering RNA (siRNA) therapeutics to directly target the undruggable KRAS (siKRAS) in combination with the pan-PI3K inhibitor GDC-0941 (GDC) to simultaneously block both PI3K and RAS signaling, thereby exerting synergistic anti-tumor effects on ovarian cancers with PTEN deficiency and KRAS mutation.

View Article and Find Full Text PDF

The use of nanomedicine for cancer treatment takes advantage of its preferential accumulation in tumors owing to the enhanced permeability and retention (EPR) effect. The development of cancer nanomedicine has promised highly effective treatment options unprecedented by standard therapeutics. However, the therapeutic efficacy of passively targeted nanomedicine is not always satisfactory because it is largely influenced by the heterogeneity of the intensity of the EPR effect exhibited within a tumor, at different stages of a tumor, and among individual tumors.

View Article and Find Full Text PDF

Cancer immunotherapy is an attractive treatment option under clinical settings. However, the major challenges of immunotherapy include limited patient response, limited tumor specificity, immune-related adverse events, and immunosuppressive tumor microenvironment. Therefore, nanoparticle (NP)-based drug delivery has been used to not only increase the efficacy of immunotherapeutic agents, but it also significantly reduces the toxicity.

View Article and Find Full Text PDF

Designer nanoparticles with controlled shapes and sizes are increasingly popular vehicles for therapeutic delivery due to their enhanced cell-delivery performance. However, our ability to fashion nanoparticles has offered only limited control over these parameters. Structural DNA nanotechnology has an unparalleled ability to self-assemble three-dimensional nanostructures with near-atomic resolution features, and thus, it offers an attractive platform for the systematic exploration of the parameter space relevant to nanoparticle uptake by living cells.

View Article and Find Full Text PDF
Article Synopsis
  • Thrombosis is a significant factor in cardiovascular diseases, leading to oxygen deprivation and tissue damage due to thrombus formation.
  • Researchers developed a new imaging tool using thrombin-activatable fluorescent peptide (TAP) and silica-coated gold nanoparticles (TAP-SiO@AuNPs) for enhanced thrombus detection via dual near-infrared fluorescence (NIRF) and micro-computed tomography (micro-CT).
  • In in vitro tests, the TAP-SiO@AuNPs showed a strong increase in fluorescence when thrombin was present, allowing for clear distinction between thrombotic lesions and surrounding tissues in a mouse model, highlighting their potential for clinical use in diagnosing and treating thrombosis.
View Article and Find Full Text PDF

Cancer theragnosis using a single multimodality agent is the next mainstay of modern cancer diagnosis, treatment, and management, but a clinically feasible agent with in vivo cancer targeting and theragnostic efficacy has not yet been developed. A new type of cancer theragnostic agent is reported, based on gold magnetism that is induced on a cancer-targeting protein particle carrier. Superparamagnetic gold-nanoparticle clusters (named SPAuNCs) are synthesized on a viral capsid particle that is engineered to present peptide ligands targeting a tumor cell receptor (TCR).

View Article and Find Full Text PDF

DNA nanostructures have evoked great interest as potential therapeutics and diagnostics due to ease and robustness of programming their shapes, site-specific functionalizations and responsive behaviours. However, their utility in biological fluids can be compromised through denaturation induced by physiological salt concentrations and degradation mediated by nucleases. Here we demonstrate that DNA nanostructures coated by oligolysines to 0.

View Article and Find Full Text PDF