Publications by authors named "Ju-An Yoon"

Article Synopsis
  • The study aims to create high-performance white phosphorescent organic light-emitting diodes (PHOLEDs) with a single emissive layer using blue, green, and red dopants through Dexter energy transfer.
  • Researchers optimized the concentrations of dopants FIrpic, Ir(ppy)3, and Ir(piq)3 to enhance energy transfer, leading to improved luminous efficiency and better color coordinates.
  • The best-performing white PHOLED achieved a luminescence of 37,810 cd/m² at 11 V, a luminous efficiency of 48.10 cd/A at 5 V, and CIE color coordinates of (0.35, 0.41).
View Article and Find Full Text PDF

In this study, the properties of blue organic light-emitting diodes (OLEDs), employing quantum well-like structure (QWS) that includes four different blue emissive materials of 4,4'-bis(2,2'-diphenylyinyl)-1,1'-biphenyl (DPVBi), 9,10-di(naphth-2-yl)anthracene (ADN), 2-(N,N-diphenyl-amino)-6-[4-(N,N-diphenyl amine)styryl]naphthalene (DPASN), and bis(2-methyl-8-quinolinolate)-4-(phenyl phenolato) aluminum (BAlq), were investigated. Conventional QWS blue OLEDs composed of multiple emissive layers and charge blocking layer with lower highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy level, and devices with triple emissive layers for more significant hole-electron recombination and a wider region for exciton generation were designed. The properties of triple emissive layered blue OLEDs with the structure of indium tin oxide (ITO) /N,N'-diphenyl-N,N'-bis(1-naphthyl-phenyl)-(1,1'-biphenyl)-4,4'-diamine (NPB) (700 Ǻ)/X (100 Ǻ)/BAlq (100 Ǻ)/X (100 Ǻ)/4,7-diphenyl-1,10-phenanthroline (Bphen) (300 Ǻ)/lithium quinolate (Liq) (20 Ǻ)/aluminum (Al) (1,200 Ǻ) (X = DPVBi, ADN, DPASN) were examined.

View Article and Find Full Text PDF

Systematic studies on carrier injection and transport are very important for achieving high efficiency in OLEDs. We demonstrate excellent green phosphorescent organic light-emitting diodes (OLED) with lithium quinolate (Liq) doped in 1,3,5-tris(N-phenylbenzimidazole-2-yl) benzene (TPBi) as the electron transport layer (ETL). The doping concentration of Liq was varied from 0% to 10%.

View Article and Find Full Text PDF