Publications by authors named "Ju Kyeong Park"

The use of nonthermal atmospheric plasma (NTP) in the biomedical field has recently expanded into cell death induction in cancer, infection prevention, inflammation treatment, and wound-healing enhancement. NTP has been demonstrated to enhance skin and muscle regeneration, but its effects on tissue regeneration, following deep tissue or muscle damage, remains underinvestigated. In this study, we determined the effects of NTP on muscle differentiation and the mechanisms of NTP's contribution to differentiation and regeneration.

View Article and Find Full Text PDF

Recent progress in the understanding non-thermal plasma (NTP) properties prompted its application in the treatment of various diseases. However, therapeutic effect of NTP on keloid cells has not been reported previously. We sought to investigate the effect of NTP treatment on keloid by comparing cell migration and collagen production of keloid (KFs) and normal fibroblasts (NFs) and determined the regulatory pathways involved.

View Article and Find Full Text PDF

Background And Purpose: Aberrant expression of β-catenin is highly associated with progression of various cancers including head and neck cancer (HNC). Green tea is most commonly used beverage in the world and one of the more bioactive compounds is the antioxidant epigallocatechin gallate (EGCG). This study was performed to investigate the mechanism by which EGCG inhibits the growth of HNC, focusing on the modulation of the expression and activity of β-catenin.

View Article and Find Full Text PDF

Advances in physics and biology have made it possible to apply non-thermal atmospheric pressure plasma (NTP) in the biomedical field. Although accumulating evidence suggests that NTP has various medicinal effects, such as facilitating skin wound healing on exposed tissue while minimizing undesirable tissue damage, the underlying molecular mechanisms are not fully understood. In this study, NTP generated from N optimized wound healing in the scratch wound healing assay.

View Article and Find Full Text PDF

An in situ-forming gel system comprised of diblock copolymer formed from polyethylene glycol (PEG) and polycaprolactone (PCL) {MPEG-b-(PCL-ran-PLLA)} could be used in controlled drug delivery for tissue remodeling. The purpose of this study is to demonstrate favorable vocal folds (VF) regeneration by using MPEG-b-(PCL-ran-PLLA) diblock copolymers (C97L3; CL/LA ratio 97:3) incorporating hepatocyte growth factor (HGF). Gradual release of HGF from C97L3 is detected and biochemical properties of released HGF are maintained.

View Article and Find Full Text PDF

Skeletal muscle can repair muscle tissue damage, but significant loss of muscle tissue or its long-lasting chronic degeneration makes injured skeletal muscle tissue difficult to restore. It has been demonstrated that non-thermal atmospheric pressure plasma (NTP) can be used in many biological areas including regenerative medicine. Therefore, we determined whether NTP, as a non-contact biological external stimulator that generates biological catalyzers, can induce regeneration of injured muscle without biomaterials.

View Article and Find Full Text PDF

Objectives: There has been a recent focus on 3D printing with regard to tissue engineering. We evaluated the efficacy of a 3D-printed (3DP) scaffold coated with mesenchymal stem cells (MSCs) seeded in fibrin for the repair of partial oesophageal defects.

Methods: MSCs from rabbit bone marrow were cultured, and a 3DP polycaprolactone (PCL) scaffold was coated with the MSCs seeded in fibrin.

View Article and Find Full Text PDF

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) represents an effective agent for the treatment of many cancers, though the majority of thyroid cancers are found to be resistant. Therefore it would be necessary to identify agents capable of increasing the sensitivity of these cancers to TRAIL-mediated cell death. Here, we examined the therapeutic effect and its underlying mechanism of combination treatment of TRAIL and histone deacetylase inhibitor, Valproic acid (VPA) in vitro using human papillary thyroid cancer (PTC) cells and in vivo using an orthotopic mouse model of PTC.

View Article and Find Full Text PDF

Recent research on non-thermal plasma (NTP, an ionized gas) has identified it as a novel cancer therapeutic tool. However, the molecular mechanism remains unclear. In this study, we demonstrated NTP induced cell death of head and neck cancer (HNC) through the AKT ubiquitin-proteasome system.

View Article and Find Full Text PDF

Conclusion: The results of the present investigation suggest that modification of HA could improve efficiency and durability in augmentation laryngoplasty.

Objectives: Injection laryngoplasty (IL) is one of the most suitable options for treatment of glottic insufficiency, which is caused by vocal fold (VF) paralysis, atrophy, or scarring. Hyaluronic acid (HA) is a widely used material for VF injection.

View Article and Find Full Text PDF

Tissue engineering using a biocompatible scaffold with various cells might be a solution for tracheal reconstruction. We investigated the plausibility of using mesenchymal stem cells (MSCs) seeded on a porcine cartilage powder (PCP) scaffold for tracheal defect repair. PCP made with minced and decellularized porcine articular cartilage was molded into a 5 × 12 mm (height × diameter) scaffold.

View Article and Find Full Text PDF

Three-dimensional printing has come into the spotlight in the realm of tissue engineering. We intended to evaluate the plausibility of 3D-printed (3DP) scaffold coated with mesenchymal stem cells (MSCs) seeded in fibrin for the repair of partial tracheal defects. MSCs from rabbit bone marrow were expanded and cultured.

View Article and Find Full Text PDF

The purpose of this study is to demonstrate scarless vocal fold (VF) regeneration by using a composite gel composed of small intestine submucosa (SIS) and mesenchymal stem cells (MSCs). A scar was made with an electrocoagulator on both VFs in 24 rabbits, followed by injection of either MSCs, SIS, or MSCs-SIS composite gel in the right side VF, while the left side VF was left untreated. VF scars were evaluated with in vivo fluorescence live imaging system (IFLIS), endoscopy, histology, and videokymography (VKG) after eight weeks.

View Article and Find Full Text PDF

Numerous studies' attempts to improve radiation-induced oral mucositis have not produced a qualified treatment yet. Our aim was to investigate the effectiveness of Korean red ginseng (KRG) on radiation-induced damage in an in vivo rat model. After 20 Gy of irradiation, rats were divided randomly into the following 4 groups: control, KRG only, radiotherapy (RT) only, and RT + KRG group.

View Article and Find Full Text PDF

Reconstruction of trachea is still a clinical dilemma. Tissue engineering is a recent and promising concept to resolve this problem. This study evaluated the feasibility of allogeneic chondrocytes cultured with fibrin/hyaluronic acid (HA) hydrogel and degradable porous poly(L-lactic-co-glycolic acid) (PLGA) scaffold for partial tracheal reconstruction.

View Article and Find Full Text PDF