Publications by authors named "Jrjeng Ruan"

Organic synaptic transistors are a promising technology for advanced electronic devices with simultaneous computing and memory functions and for the application of artificial neural networks. In this study, the neuromorphic electrical characteristics of organic synaptic electrolyte-gated transistors are correlated with the microstructural and interfacial properties of the active layers. This is accomplished by utilizing a semiconducting/insulating polyblend-based pseudobilayer with embedded source and drain electrodes, referred to as PB-ESD architecture.

View Article and Find Full Text PDF

The importance of bacteria detection lies in its role in enabling early intervention, disease prevention, environmental protection, and effective treatment strategies. Advancements in technology continually enhance the speed, accuracy, and sensitivity of detection methods, aiding in addressing these critical issues. This study first reports the fabrication of an inverter constructed using crosslinked-poly(4-vinylphenol) (C-PVP) as the dielectric layer and an organic complementary metal-oxide semiconductor (O-CMOS) based on pentacene and N,N'-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-C) as a diagnostic biosensor to rapidly detect bacterial concentration.

View Article and Find Full Text PDF

Organic light-emitting field-effect transistors (OLEFETs) with bilayer structures have been widely studied due to their potential to integrate high-mobility organic transistors and efficient organic light-emitting diodes. However, these devices face a major challenge of imbalance charge transport, leading to a severe efficiency roll-off at high brightness. Here, we propose a solution to this challenge by introducing a transparent organic/inorganic hybrid contact with specially designed electronic structures.

View Article and Find Full Text PDF
Article Synopsis
  • Thin film catalysts provide better performance than traditional catalyst particles in gas evolution reactions, particularly for oxygen evolution reactions (OER).
  • A high entropy alloy (HEA) thin film electrocatalyst made from FeNiMoCrAl was developed and showed superior OER performance with low overpotential and high stability during extended use.
  • The study incorporates both experimental and theoretical approaches to understand how the metal composition affects the catalyst's electronic structure and its microstructural changes during the OER process.
View Article and Find Full Text PDF

Ferromagnetic semiconductors with structural flexibility are an indispensable feature for future flexible spin-electronic applications. In this case, we introduce magnetic ingredients into an organic semiconductor, namely, pentacene, to form a ferromagnetic organic semiconductor (FOS). The first observation for ferromagnetic Ni-doped pentacene semiconductors at room temperature in the field of semiconductor spintronics is reported in this article.

View Article and Find Full Text PDF

Herein, a new high entropy material is reported, i.e., a noble metal-free high entropy glycerate (HEG), synthesized via a simple solvothermal process.

View Article and Find Full Text PDF

Conjugated polymer-fullerene-based bulk-heterojunction (BHJ) organic solar cells (OSCs) have attracted tremendous attention over the past two decades because of their potential to develop low-cost and easy methods to produce energy from light. The complicated microstructure and morphology with randomly organized architecture of these polymer-fullerene-based active layers (ALs) is a key factor that limits photovoltaic performance. In this study, a binary-solvent annealing (BSA) approach was established to improve the poly(3-hexylthiophene):indene-C60 bisadduct-based AL for efficient BHJ-type OSCs by varying the second solvents with different boiling points (BP).

View Article and Find Full Text PDF

We demonstrate semiconducting polymer-based thin-film transistors (PTFTs) with fast switching performance and an uncommon nondecaying feature. These PTFTs based on widely studied poly(3-hexylthiophene) are developed by incorporating the insulating polymer into the active channel and subjecting the compound to specific, spontaneous multiple-scale phase separation (MSPS). An in-depth study is conducted on the interfacial and phase-separated microstructure of the semiconducting/insulating blending active layer and its effect on the electrical characteristics of PTFTs.

View Article and Find Full Text PDF