Deuterostomes are one major group of bilaterians composed by hemichordates and echinoderms (collectively called Ambulacraria) and chordates. Comparative studies between these groups can provide valuable insights into the nature of the last common ancestor of deuterostomes and that of bilaterians. Indirect development of hemichordates, with larval phases similar to echinoderms and an adult body plan with an anteroposterior polarity like chordates and other bilaterians, makes them a suitable model for studying the molecular basis of development among deuterostomes.
View Article and Find Full Text PDFDeuterostomes are a monophyletic group of animals that includes Hemichordata, Echinodermata (together called Ambulacraria), and Chordata. The diversity of deuterostome body plans has made it challenging to reconstruct their ancestral condition and to decipher the genetic changes that drove the diversification of deuterostome lineages. Here, we generate chromosome-level genome assemblies of 2 hemichordate species, Ptychodera flava and Schizocardium californicum, and use comparative genomic approaches to infer the chromosomal architecture of the deuterostome common ancestor and delineate lineage-specific chromosomal modifications.
View Article and Find Full Text PDFMetameric somites are a novel character of chordates with unclear evolutionary origins. In the early branching chordate amphioxus, anterior somites are derived from the paraxial mesodermal cells that bud off the archenteron (i.e.
View Article and Find Full Text PDFHow animal embryos determine their early cell fates is an important question in developmental biology. In various model animals, asymmetrically localized maternal transcripts play important roles in axial patterning and cell fate specification. Cephalochordates (amphioxus), which have three living genera (Asymmetron, Epigonichthys, and Branchiostoma), are an early branching chordate lineage and thus occupy a key phylogenetic position for understanding the evolution of chordate developmental mechanisms.
View Article and Find Full Text PDFParasitic copepods are frequently discovered in many marine animals, and they exhibit great species diversity with remarkable morphological adaptations to their parasitic lifestyle. Similar to their free-living relatives, parasitic copepods usually develop through complex life cycle, but they eventually transform into a modified adult form with reduced appendages. Although the life cycle and distinct larval stages have been described in a few species of parasitic copepods, particularly those infecting commercially valuable marine animals (such as fishes, oysters, and lobsters), very little is known about the developmental process of the species that transformed into extremely simplified adult body plan.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2023
Extensive adenosine-to-inosine (A-to-I) editing of nuclear-transcribed mRNAs is the hallmark of metazoan transcriptional regulation. Here, by profiling the RNA editomes of 22 species that cover major groups of Holozoa, we provide substantial evidence supporting A-to-I mRNA editing as a regulatory innovation originating in the last common ancestor of extant metazoans. This ancient biochemistry process is preserved in most extant metazoan phyla and primarily targets endogenous double-stranded RNA (dsRNA) formed by evolutionarily young repeats.
View Article and Find Full Text PDFSignificanceIn this manuscript, we address an essential question in developmental and evolutionary biology: How have changes in gene regulatory networks contributed to the invertebrate-to-vertebrate transition? To address this issue, we perturbed four signaling pathways critical for body plan formation in the cephalochordate amphioxus and in zebrafish and compared the effects of such perturbations on gene expression and gene regulation in both species. Our data reveal that many developmental genes have gained response to these signaling pathways in the vertebrate lineage. Moreover, we show that the interconnectivity between these pathways is much higher in zebrafish than in amphioxus.
View Article and Find Full Text PDFChordates are divided into three subphyla: Vertebrata, Tunicata, and Cephalochordata. Phylogenetically, the Cephalochordata, more commonly known as lancelets or amphioxus, constitute the sister group of Vertebrata and Tunicata. Lancelets are small, benthic, marine filter feeders, and their roughly three dozen described species are divided into three genera: , , and .
View Article and Find Full Text PDFMineralized skeletal tissues of vertebrates are an evolutionary novelty within the chordate lineage. While the progenitor cells that contribute to vertebrate skeletal tissues are known to have two embryonic origins, the mesoderm and neural crest, the evolutionary origin of their developmental process remains unclear. Using cephalochordate amphioxus as our model, we found that cells at the lateral wall of the amphioxus somite express (a crucial gene for tissue mineralization) and various collagen genes.
View Article and Find Full Text PDFAn ontology is a computable representation of the different parts of an organism and its different developmental stages as well as the relationships between them. The ontology of model organisms is therefore a fundamental tool for a multitude of bioinformatics and comparative analyses. The cephalochordate amphioxus is a marine animal representing the earliest diverging evolutionary lineage of chordates.
View Article and Find Full Text PDFStudies in various animals have shown that asymmetrically localized maternal transcripts play important roles in axial patterning and cell fate specification in early embryos. However, comprehensive analyses of the maternal transcriptomes with spatial information are scarce and limited to a handful of model organisms. In cephalochordates (amphioxus), an early branching chordate group, maternal transcripts of germline determinants form a compact granule that is inherited by a single blastomere during cleavage stages.
View Article and Find Full Text PDFPrimordial germ cells (PGCs) are specified during development by either one of two major mechanisms, the preformation mode or the inductive mode. Because the inductive mode is widely employed by many bilaterians and early branching metazoan lineages, it has been postulated as an ancestral mechanism. However, among the deuterostome species that have been studied, invertebrate chordates use the preformation mode, while many vertebrate and echinoderm species are known to utilize an inductive mechanism, thus leaving the evolutionary history of PGC specification in the deuterostome lineage unclear.
View Article and Find Full Text PDFAlthough it is widely believed that early vertebrate evolution was shaped by ancient whole-genome duplications, the number, timing and mechanism of these events remain elusive. Here, we infer the history of vertebrates through genomic comparisons with a new chromosome-scale sequence of the invertebrate chordate amphioxus. We show how the karyotypes of amphioxus and diverse vertebrates are derived from 17 ancestral chordate linkage groups (and 19 ancestral bilaterian groups) by fusion, rearrangement and duplication.
View Article and Find Full Text PDFCertain vertebrates such as salamanders and zebrafish are able to regenerate complex tissues (e.g., limbs and fins) with remarkable fidelity.
View Article and Find Full Text PDFA defining feature of chordates is the unique presence of a dorsal hollow neural tube that forms by internalization of the ectodermal neural plate specified via inhibition of BMP signaling during gastrulation. While BMP controls dorsoventral (DV) patterning across diverse bilaterians, the BMP-active side is ventral in chordates and dorsal in many other bilaterians. How this phylum-specific DV inversion occurs and whether it is coupled to the emergence of the dorsal neural plate are unknown.
View Article and Find Full Text PDFGene regulatory networks underlying cellular pluripotency are controlled by a core circuitry of transcription factors in mammals, including POU5F1. However, the evolutionary origin and transformation of pluripotency-related transcriptional networks have not been elucidated in deuterostomes. PR domain-containing protein 14 (PRDM14) is specifically expressed in pluripotent cells and germ cells, and is required for establishing embryonic stem cells (ESCs) and primordial germ cells in mice.
View Article and Find Full Text PDFVertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period.
View Article and Find Full Text PDFMethods Mol Biol
June 2019
The BMP signaling pathway has been shown to be involved in different aspects of embryonic development across diverse metazoan phyla. Comparative studies on the roles of the BMP signaling pathway provide crucial insights into the evolution of the animal body plans. In this chapter, we present the general workflow on how to investigate the roles of BMP signaling pathway during amphioxus embryonic development.
View Article and Find Full Text PDFBackground: Mesoderm is generally considered to be a germ layer that is unique to Bilateria, and it develops into diverse tissues, including muscle, and in the case of vertebrates, the skeleton and notochord. Studies on various deuterostome animals have demonstrated that fibroblast growth factor (FGF) signaling is required for the formation of many mesodermal structures, such as vertebrate somites, from which muscles are differentiated, and muscles in sea urchin embryos, suggesting an ancient role of FGF signaling in muscle development. However, the formation of trunk muscles in invertebrate chordates is FGF-independent, leading to ambiguity about this ancient role in deuterostomes.
View Article and Find Full Text PDFThe retinoic acid (RA) signaling pathway regulates axial patterning and neurogenesis in the developing central nervous system (CNS) of chordates, but little is known about its roles during peripheral nervous system (PNS) formation and about how these roles might have evolved. This study assesses the requirement of RA signaling for establishing a functional PNS in the cephalochordate amphioxus, the best available stand-in for the ancestral chordate condition. Pharmacological manipulation of RA signaling levels during embryogenesis reduces the ability of amphioxus larvae to respond to sensory stimulation and alters the number and distribution of ectodermal sensory neurons (ESNs) in a stage- and context-dependent manner.
View Article and Find Full Text PDFHow the embryonic body axis is generated is a fundamental question in developmental biology. The molecular mechanisms involved in this process have been the subject of intensive studies using traditional model organisms during the last few decades, and the results have provided crucial information for understanding the formation of animal body plans. In particular, studies exploring the molecular nature of Spemann's organizer have revealed the intricate interactions underlying several signaling pathways (namely the Wnt/β-catenin, Nodal and Bmp pathways) that pattern the dorsoventral (DV) axis in vertebrate embryos.
View Article and Find Full Text PDFDespite morphological diversification of chordates over 550 million years of evolution, their shared basic anatomical pattern (or 'bodyplan') remains conserved by unknown mechanisms. The developmental hourglass model attributes this to phylum-wide conserved, constrained organogenesis stages that pattern the bodyplan (the phylotype hypothesis); however, there has been no quantitative testing of this idea with a phylum-wide comparison of species. Here, based on data from early-to-late embryonic transcriptomes collected from eight chordates, we suggest that the phylotype hypothesis would be better applied to vertebrates than chordates.
View Article and Find Full Text PDF