Background: Controversy exists concerning the beneficial or harmful effects of the presence of ectopic calcification in the coronary arteries. Additionally, further elucidation of the exact pathophysiological mechanism is needed. In this study, we sought to identify metabolic markers of vascular calcification that could assist in understanding the disease, monitoring its progress and generating hypotheses describing its pathophysiology.
View Article and Find Full Text PDFIdiopathic nephrotic syndrome (INS) is caused by renal diseases that increase the permeability of the glomerular filtration barrier without evidence of a specific systemic cause. The aim of the present work was to reveal inherent molecular features of INS in children using combined urinary proteomics and metabolomics profiling. In this study, label-free mass spectrometric analysis of urinary proteins and small molecule metabolites was carried out in 12 patients with INS versus 12 sex- and age-matched control subjects with normal renal function.
View Article and Find Full Text PDFBackground: Accurate mass based LC-MS combined with statistical analysis is established as a core analytical technology for metabonomic studies. This is primarily due to the specificity, sensitivity and structural elucidation capabilities of the technology. The vast majority of these studies are performed using acidic-based mobile phases in combination with positive ESI mode LC-MS.
View Article and Find Full Text PDFA strategy for optimizing LC-MS metabolomics data processing is proposed. We applied this strategy on the XCMS open source package written in R on both human and plant biology data. The strategy is a sequential design of experiments (DoE) based on a dilution series from a pooled sample and a measure of correlation between diluted concentrations and integrated peak areas.
View Article and Find Full Text PDFCombining data from multiple analytical platforms is essential for comprehensive study of the molecular phenotype (metabotype) of a given biological sample. The metabolite profiles generated are intrinsically dependent on the analytical platforms, each requiring optimization of instrumental parameters, separation conditions, and sample extraction to deliver maximal biological information. An in-depth evaluation of extraction protocols for characterizing the metabolome of the hepatobiliary fluke Fasciola hepatica , using ultra performance liquid chromatography and capillary electrophoresis coupled with mass spectroscopy is presented.
View Article and Find Full Text PDF(1)H nuclear magnetic resonance spectroscopy (NMR) resonances from lipids in tumours are associated with tumour grade and treatment response. The origin of these NMR signals is mainly considered to be cytoplasmic lipid droplets (LDs). Techniques exist for isolating LDs but little is known about their composition and its relationship to NMR signals.
View Article and Find Full Text PDFOvert response to a single 6.25 mg dose of ochratoxin A (OTA) by oral gavage to 15 months male rats was progressive loss of weight during the following four days. Lost weight was restored within one month and animals had a normal life-span without OTA-related terminal disease.
View Article and Find Full Text PDFA hybrid quadrupole orthogonal time-of-flight mass spectrometer (QToF) equipped with a solids analysis probe (atmospheric solids analysis probe-mass spectrometry (ASAP-MS)) has been applied to the high throughput qualitative analysis of bile (rat and dog) and urine (rat) samples. The metabolic profiles generated by ASAP-MS was less comprehensive than that provided by liquid chromatography (LC) or gas chromatography-mass spectrometry (GC-MS) metabonomic profiling, though simple types of sample preparation were found to increase the range of ions detected for bile (a complex, multicompartment sample type). While unsuited to biomarker discovery, ASAP-MS of these biofluids generated sufficiently complex metabolic fingerprints to enable them to be distinguished from each other using multivariate statistical methods such as principal components analysis (PCA).
View Article and Find Full Text PDFA fast and robust method for lipid profiling utilizing liquid chromatography coupled with mass spectrometry has been demonstrated and validated for the analysis of human plasma. This method allowed quantification and identification of lipids in human plasma using parallel alternating low energy and high energy collision spectral acquisition modes. A total of 275 [corrected] lipids were identified and quantified (as relative concentrations) in both positive and negative ion electrospray ionization mode.
View Article and Find Full Text PDFThe use of exact mass liquid chromatography/mass spectrometry (LC/MS) for drug metabolism studies has increased significantly in recent years. Firstly, exact mass measurements facilitate identification of standard biotransformations through the use of narrow window extracted ion chromatograms, which are typically highly selective relative to signals from matrix or dosing components. Secondly, novel metabolites can be characterized via elemental formula calculations and high-resolution product ion spectra.
View Article and Find Full Text PDFWe present a novel application of the heteronuclear statistical total correlation spectroscopy (HET-STOCSY) approach utilizing statistical correlation between one-dimensional 19F/1H NMR spectroscopic data sets collected in parallel to study drug metabolism. Parallel one-dimensional (1D) 800 MHz 1H and 753 MHz 19F{1H} spectra (n = 21) were obtained on urine samples collected from volunteers (n = 6) at various intervals up to 24 h after oral dosing with 500 mg of flucloxacillin. A variety of statistical relationships between and within the spectroscopic datasets were explored without significant loss of the typically high 1D spectral resolution, generating 1H-1H STOCSY plots, and novel 19F-1H HET-STOCSY, 19F-19F STOCSY, and 19F-edited 1H-1H STOCSY (X-STOCSY) spectroscopic maps, with a resolution of approximately 0.
View Article and Find Full Text PDFMetabolomics studies generate increasingly complex data tables, which are hard to summarize and visualize without appropriate tools. The use of chemometrics tools, e.g.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
June 2007
Metabolite identification studies involve the detection and structural characterization of the biotransformation products of drug candidates. These experiments are necessary throughout the drug discovery and development process. The use of high-resolution chromatography and high-resolution mass spectrometry together with data processing using mass defect filtering is described for in vitro and in vivo metabolite identification studies.
View Article and Find Full Text PDFUltra-Performance LC (UPLC) utilizing sub-2-mum porous stationary phase particles operating with high linear velocities at pressures >9000 psi was coupled with orthogonal acceleration time-of-flight (oaTOF) mass spectrometry and successfully employed for the rapid separation of lipids from complex matrices. The UPLC system produced information-rich chromatograms with typical measured peak widths of 3 s at peak base, generating peak capacities in excess of 200 in 10 min. Further UPLC coupled with MSE technology provided parent and fragment mass information of lipids in one chromatographic run, thus, providing an attractive alternative to current LC methods for targeted lipid analysis as well as lipidomic studies.
View Article and Find Full Text PDFAnalysis of biological fluids using ultra-performance liquid chromatography/mass spectrometry (UPLC/MS) (metabonomics) can allow new insights to be gained into disease processes, with advances in chromatographic techniques enabling the detection of thousands of metabolites. In this work metabonomics has been used to investigate the metabolic processes involved in type II diabetes in the Zucker obese rat. Plasma was analyzed from three different strains, the Zucker (fa/fa) obese, Zucker lean and the lean/(fa) obese cross.
View Article and Find Full Text PDFThe metabolism of acetyl-labelled phenacetin-C2H3 was investigated in man following a single (150 mg) oral dose. Urine samples were collected at predose, 0-2 h and >2-4 h post-dose, and samples from each time-point were then analysed directly using 1H-nuclear magnetic resonance (NMR) spectroscopy. The phenacetin metabolites acetaminophen (paracetamol) glucuronide, sulphate and the N-acetyl-L-cysteinyl conjugate were identified by this method, and all showed clear evidence of the loss of the original 2H3-acetyl label and its replacement with 1H3 (futile deacetylation).
View Article and Find Full Text PDFInterspecies variation between rats and mice has been studied for hydrazine toxicity using a novel metabonomics approach. Hydrazine hydrochloride was administered to male Sprague-Dawley rats (30 mg/kg, n = 10 and 90 mg/kg, n = 10) and male B6C3F mice (100 mg/kg, n = 8 and 250 mg/kg, n = 8) by oral gavage. In each species, the high dose was selected to produce the major histopathologic effect, hepatocellular lipid accumulation.
View Article and Find Full Text PDFCurr Top Med Chem
January 2002
Biofluid NMR spectroscopy is a powerful tool providing a comprehensive metabolic profile of the low molecular weight components in biofluids that reflect concentrations and fluxes of endogenous metabolites involved in key intermediary cellular pathways, thereby giving an indication of an organisms physiological or pathophysiological status [1]. The interaction of pharmacological agents with cells and tissues can also be monitored using recently developed high resolution magic-angle spinning (HRMAS) NMR spectroscopic technology for biological matrices [1]. However, recent developments in both spectrometer and software technology has resulted in improved capacity for sample handling, leading to a rapid growth in the size of toxicological spectral databases, and increased the complexity of the biological spectral data generated.
View Article and Find Full Text PDFThe systemic biochemical effects of oral hydrazine administration (dosed at 75, 90, and 120 mg/kg) have been investigated in male Han Wistar rats using metabonomic analysis of (1)H NMR spectra of urine and plasma, conventional clinical chemistry, and liver histopathology. Plasma samples were collected both pre- and 24 h postdose, while urine was collected predose and daily over a 7 day postdose period. (1)H NMR spectra of the biofluids were analyzed visually and via pattern recognition using principal component analysis.
View Article and Find Full Text PDFHigh resolution nuclear magnetic resonance (NMR) spectroscopy is a very powerful tool for the structural identification of xenobiotic metabolites in complex biological matrices such as plasma, urine and bile. However, these fluids are dominated by thousands of signals resulting from endogenous metabolites and it is advantageous when investigating drug metabolites in such matrices to simplify the spectra by including a separation step in the experiment by directly-coupling HPLC and NMR. Naproxen (6-methoxy-alpha-methyl-2-naphthyl acetic acid) is administered as the S-enantiomer and is metabolised in vivo to form its demethylated metabolite which is subsequently conjugated with beta-D-glucuronic acid as well as with sulfate.
View Article and Find Full Text PDFThe human in vivo metabolism of the HIV-1 reverse transcriptase inhibitor 5-chloro-1-(2',3'-dideoxy-3'-fluoro-erythro-pentofuranosyl)uracil (BW935U83) was studied using 19F NMR spectroscopy, directly coupled LC-NMR and LC-NMR-MS. The number and relative proportions of the drug metabolites were obtained from 19F NMR spectra of whole human urine. The novel use of the continuous-flow 19F detected LC-NMR experiment yielded chromatographic retention times and 19F chemical shifts for the parent drug, the glucuronide conjugate of the parent and an early eluting polar metabolite.
View Article and Find Full Text PDFThe metabolism and futile deacetylation of phenacetin has been investigated in the rat via 1H NMR spectroscopic analysis of urine. Animals were dosed with either phenacetin or phenacetin-C2H3 and urine samples were collected for -24-0 (pre-dosing), 0-8. 8-24, and 24-48 h post-dosing.
View Article and Find Full Text PDFCurr Opin Drug Discov Devel
January 2000
(1)H-NMR spectroscopy has proved to be a powerful and efficient means of monitoring the interaction of pharmacological agents with cells and tissues. The application of this technique to biofluid analysis, gives rise to a comprehensive metabolic profile of the low molecular weight components of biofluids, that reflect concentrations and fluxes of endogenous metabolites involved in key intermediary cellular pathways, thereby giving an indication of an organism's physiological or pathophysiological status. Recent developments in spectrometer technology have resulted in increased sensitivity and dispersion.
View Article and Find Full Text PDFN-acetyl-p-benzoquinone imine (NAPQI), a reactive metabolite of acetaminophen (APAP), can arylate and oxidize protein and nonprotein thiols in the pathogenesis of APAP-induced hepatotoxicity. We report the first direct evidence for the formation of a labile ipso adduct between glutathione (GSH) and NAPQI using a combination of techniques including liquid chromatography/tandem mass spectrometry and liquid chromatography/NMR spectroscopy. Decomposition kinetics of the GSH-NAPQI ipso adduct and product ratios suggested that the ipso adduct was readily reversible back to NAPQI under neutral and basic conditions.
View Article and Find Full Text PDF