Publications by authors named "Jp Defour"

Dimerization of the thrombopoietin receptor (TpoR) is necessary for receptor activation and downstream signaling through activated Janus kinase 2. We have shown previously that different orientations of the transmembrane (TM) helices within a receptor dimer can lead to different signaling outputs. Here we addressed the structural basis of activation for receptor mutations S505N and W515K that induce myeloproliferative neoplasms.

View Article and Find Full Text PDF

Mutant calreticulin (CALR) proteins resulting from a -1/+2 frameshifting mutation of the CALR exon 9 carry a novel C-terminal amino acid sequence and drive the development of myeloproliferative neoplasms (MPNs). Mutant CALRs were shown to interact with and activate the thrombopoietin receptor (TpoR/MPL) in the same cell. We report that mutant CALR proteins are secreted and can be found in patient plasma at levels up to 160 ng/mL, with a mean of 25.

View Article and Find Full Text PDF

Objectives: The SARS-CoV-2 pandemic has created an unprecedented need for rapid large-scale diagnostic testing to prompt clinical and public health interventions. Currently, several quantitative reverse-transcription polymerase chain reaction (RT-qPCR) assays recommended by the World Health Organization are being used by clinical and public health laboratories and typically target regions of the RNA-dependent RNA polymerase (RdRp), envelope (E) and nucleocapsid (N) coding region. However, it is currently unclear if results from different tests are comparable.

View Article and Find Full Text PDF

Background: Evaluation of an individual's thrombin-generating capacity enables a global assessment of the coagulation cascade and is therefore thought to better reflect the clotting function of blood. However, the lack of standardization still hampers the use in routine clinical practice.

Methods: Nineteen healthy subjects were sampled once a week for 5 consecutive weeks.

View Article and Find Full Text PDF

Hypereosinophilia (HE) is rare but often secondary to a nonhematologic disease such as allergic disorders and parasitic infections. HE can also be associated with hematologic malignancies and be the result of a clonal proliferation or reactive to another hematologic condition. Association of HE with acute lymphoblastic leukemia (ALL) is rare in children.

View Article and Find Full Text PDF

Telomeres are non-coding DNA sequences that protect chromosome ends and shorten with age. Short telomere length (TL) is associated with chronic diseases and immunosenescence. The main risk factor for mortality of coronavirus disease 2019 (COVID-19) is older age, but outcome is very heterogeneous among individuals of the same age group.

View Article and Find Full Text PDF

Objectives As severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) pandemic is increasing its victims on a global scale with recurring outbreaks, it remains of outmost importance to rapidly identify people requiring an intensive care unit (ICU) hospitalization. The aim of this study was to identify Coronavirus Disease 2019 (COVID-19) biomarkers, to investigate their correlation with disease severity and to evaluate their usefulness for follow-up. Methods Fifty patients diagnosed with SARS-Cov-2 were included in March 2020.

View Article and Find Full Text PDF

Introduction: The presence of high fluorescent cells (HF-BF) on the Sysmex XN-1000 hematology analyzers has gained interest regarding the prediction of malignant cells in body fluids, but lacks sensitivity. We aimed to increase this sensitivity by combining HF-BF value, automated results, and clinical information.

Methods: We evaluated a new workflow for the management of body fluids in the hematology laboratory, including the HF-BF criterion and clinical information.

View Article and Find Full Text PDF

Mutations in the MPL gene encoding the human thrombopoietin receptor (TpoR) drive sporadic and familial essential thrombocythemias (ETs). We identified 2 ET patients harboring double mutations in cis in MPL, namely, L498W-H499C and H499Y-S505N. Using biochemical and signaling assays along with partial saturation mutagenesis, we showed that L498W is an activating mutation potentiated by H499C and that H499C and H499Y enhance the activity of the canonical S505N mutation.

View Article and Find Full Text PDF

Background: Hemophagocytic lymphohistiocytosis (HLH) is a life-threatening disorder characterized by hyperimmune response. The mortality is high despite progress being made in the diagnosis and treatment of the disease.

Aim: This review aimed to update knowledge on adult HLH pathophysiology, identifiy the numerous causes, and help clinicians make early diagnosis and initiate treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Certain changes (mutations) in a gene called CALR can cause diseases like essential thrombocythemia (ET) and primary myelofibrosis (PMF).
  • Scientists created special mice with these CALR mutations to study how they affect blood cell production.
  • These mutated mice had more platelets in their blood and showed issues with heart development when the mutations were present in both copies of the gene.
View Article and Find Full Text PDF

Despite the continuing improvement of automated blood cell counters, confirmation by blood smear examination remains the gold standard in case of anomalies. With a constant goal of standardisation, different experts committees (e.g.

View Article and Find Full Text PDF

Calreticulin (CALR) +1 frameshift mutations in exon 9 are prevalent in myeloproliferative neoplasms. Mutant CALRs possess a new C-terminal sequence rich in positively charged amino acids, leading to activation of the thrombopoietin receptor (TpoR/MPL). We show that the new sequence endows the mutant CALR with rogue chaperone activity, stabilizing a dimeric state and transporting TpoR and mutants thereof to the cell surface in states that would not pass quality control; this function is absolutely required for oncogenic transformation.

View Article and Find Full Text PDF

Neutropenia represents an important problem in patients with genetic deficiency in either the glucose-6-phosphate transporter of the endoplasmic reticulum (G6PT/SLC37A4) or G6PC3, an endoplasmic reticulum phosphatase homologous to glucose-6-phosphatase. While affected granulocytes show reduced glucose utilization, the underlying mechanism is unknown and causal therapies are lacking. Using a combination of enzymological, cell-culture, and in vivo approaches, we demonstrate that G6PT and G6PC3 collaborate to destroy 1,5-anhydroglucitol-6-phosphate (1,5AG6P), a close structural analog of glucose-6-phosphate and an inhibitor of low- hexokinases, which catalyze the first step in glycolysis in most tissues.

View Article and Find Full Text PDF

High-grade B-cell lymphomas with MYC and BCL2 or BCL6 rearrangements are highly aggressive B-cell lymphomas called double-hit lymphomas (HGBL-DH). They are particularly refractory to standard treatments and carry a poor prognosis. Fragments of resected tumoral lymph nodes from two HGBL-DH patients were put in culture.

View Article and Find Full Text PDF

According to WHO recommendations, diagnosis of chronic myelomonocytic leukemia (CMML) beforehand requires microscopic examination of peripheral blood to identify dysplasia and/or blasts when monocytes are greater or equal to 1.0 × 10/L and 10% of leucocytes. We analyzed parameters derived from Sysmex XN analyzers to improve the management of microscopic examination for monocytosis.

View Article and Find Full Text PDF

A well-functioning hematopoietic system requires a certain robustness and flexibility to maintain appropriate quantities of functional mature blood cells, such as red blood cells and platelets. This review focuses on the cytokine receptor that plays a significant role in thrombopoiesis: the receptor for thrombopoietin (TPO-R; also known as MPL). Here, we survey the work to date to understand how this receptor functions at a molecular level throughout its lifecycle, from traffic to the cell surface, dimerization and binding cognate cytokine its extracellular domain, through to its subsequent activation of associated Janus kinases and initiation of downstream signaling pathways, as well as the regulation of these processes.

View Article and Find Full Text PDF

Background: Neutrophil-to-lymphocyte ratio (NLR) has proven its prognostic value in cardiovascular diseases, infections, inflammatory diseases and in several types of cancers. However, no cut-off has been proposed on the basis of reference values coming from healthy population.

Methods: Routine blood samples were obtained (n = 413) from workers (age: median 38, range: 21-66 years) involved in a health care prevention program, to determine means, standard deviations (SDs), 95% confidence intervals (95% CI), percentiles P2.

View Article and Find Full Text PDF

The mechanisms behind the hereditary thrombocytosis induced by the thrombopoietin (THPO) receptor MPL P106L mutant remain unknown. A complete trafficking defect to the cell surface has been reported, suggesting either weak constitutive activity or nonconventional THPO-dependent mechanisms. Here, we report that the thrombocytosis phenotype induced by MPL P106L belongs to the paradoxical group, where low MPL levels on platelets and mature megakaryocytes (MKs) lead to high serum THPO levels, whereas weak but not absent MPL cell-surface localization in earlier MK progenitors allows response to THPO by signaling and amplification of the platelet lineage.

View Article and Find Full Text PDF

Mutations in the calreticulin gene (CALR) represented by deletions and insertions in exon 9 inducing a -1/+2 frameshift are associated with a significant fraction of myeloproliferative neoplasms (MPNs). The mechanisms by which CALR mutants induce MPN are unknown. Here, we show by transcriptional, proliferation, biochemical, and primary cell assays that the pathogenic CALR mutants specifically activate the thrombopoietin receptor (TpoR/MPL).

View Article and Find Full Text PDF

Ligand binding to the extracellular domain of the thrombopoietin receptor (TpoR) imparts a specific orientation on the transmembrane (TM) and intracellular domains of the receptors that is required for physiologic activation via receptor dimerization. To map the inactive and active dimeric orientations of the TM helices, we performed asparagine (Asn)-scanning mutagenesis of the TM domains of the murine and human TpoR. Substitution of Asn at only one position (S505N) activated the human receptor, whereas Asn substitutions at several positions activated the murine receptor.

View Article and Find Full Text PDF