Publications by authors named "Jozsef T Toth"

Phosphatidylinositol 4,5-bisphosphate (PIP2) has been shown to be critical for the endocytosis of G protein-coupled receptors (GPCRs). We have previously demonstrated that depletion of PIP2 by chemically induced plasma membrane (PM) recruitment of a 5-phosphatase domain prevents the internalization of the β2 adrenergic receptor (β2AR) from the PM to early endosomes. In this study, we tested the effect of hormone-induced PM PIP2 depletion on β2AR internalization using type-1 angiotensin receptor (AT1R) or M3 muscarinic acetylcholine receptor (M3R).

View Article and Find Full Text PDF

Performing tracheostomy improves patient comfort and success rate of weaning from prolonged invasive mechanical ventilation. Data suggest that patients have more benefit of percutaneous technique than the surgical procedure, however, there is no consensus on the percutaneous method of choice regarding severe complications such as late tracheal stenosis. Aim of this study was comparing incidences of cartilage injury caused by different percutaneous dilatation techniques (PDT), including Single Dilator, Griggs' and modified (bidirectional) Griggs' method.

View Article and Find Full Text PDF

Introduction: Bedside lung ultrasound has gained a key role in each segment of the treatment chain during the COVID-19 pandemic. During the diagnostic assessment of the critically ill patients in ICUs, it is highly important to maximize the amount and quality of gathered information while minimizing unnecessary interventions (e.g.

View Article and Find Full Text PDF

There are several difficulties to face when investigating the role of phosphoinositides. Although they are present in most organelles, their concentration is very low, sometimes undetectable with the available methods; moreover, their level can quickly change upon several external stimuli. Here we introduce a newly improved lipid sensor tool-set based on the balanced expression of luciferase-fused phosphoinositide recognizing protein domains and a Venus protein targeted to the plasma membrane, allowing us to perform Bioluminescence Resonance Energy Transfer (BRET) measurements that reflect phosphoinositide changes in a population of transiently transfected cells.

View Article and Find Full Text PDF

Deciphering many roles played by inositol lipids in signal transduction and membrane function demands experimental approaches that can detect their dynamic accumulation with subcellular accuracy and exquisite sensitivity. The former criterion is met by imaging of fluorescence biosensors in living cells, whereas the latter is facilitated by biochemical measurements from populations. Here, we introduce BRET-based biosensors able to detect rapid changes in inositol lipids in cell populations with both high sensitivity and subcellular resolution in a single, convenient assay.

View Article and Find Full Text PDF

Improved versions of inositol-1,4,5-trisphosphate (InsP3) sensors were created to follow intracellular InsP3 changes in single living cells and in cell populations. Similar to previous InsP3 sensors the new sensors are based on the ligand binding domain of the human type-I InsP3 receptor (InsP3R-LBD), but contain a mutation of either R265K or R269K to lower their InsP3 binding affinity. Tagging the InsP3R-LBD with N-terminal Cerulean and C-terminal Venus allowed measurement of InsP3 in single-cell FRET experiments.

View Article and Find Full Text PDF

Receptor endocytosis plays an important role in regulating the responsiveness of cells to specific ligands. Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] has been shown to be crucial for endocytosis of some cell surface receptors, such as EGF and transferrin receptors, but its role in G-protein-coupled receptor internalization has not been investigated. By using luciferase-labeled type 1 angiotensin II (AT1R), type 2C serotonin (5HT2CR) or β(2) adrenergic (β2AR) receptors and fluorescently tagged proteins (β-arrestin-2, plasma-membrane-targeted Venus, Rab5) we were able to follow the sequence of molecular interactions along the endocytic route of the receptors in HEK293 cells using the highly sensitive method of bioluminescence resonance energy transfer and confocal microscopy.

View Article and Find Full Text PDF