Publications by authors named "Jozsef Mandl"

Glycogen, the branched polymer of glucose is found mainly in the liver and muscle in mammals. Along with several other proteins, glycogen forms separate cellular organelles, and particles in cells. Glycogen particles in the liver have a special metabolic and also regulatory connection to the intracellular endomembrane system, particularly the endoplasmic reticulum.

View Article and Find Full Text PDF

Although the role of autophagy has been implicated in several forms of chronic hepatitis, it is still not fully understood. Active autophagy eliminates damaged molecules and organelles (such as mitochondria) by lysosomal degradation. In the present study, we aimed to examine and compare autophagy activity in chronic hepatitis C (CHC) and autoimmune hepatitis (AIH) by detecting the expression of autophagy (LC3 and p62) and mitochondrium-related (TOMM20) proteins, as well as the levels of selected microRNAs (miR-101, -155, -204 and - 224) known to be involved in the regulation of autophagy.

View Article and Find Full Text PDF

Acetaminophen (APAP) induced hepatotoxicity involves activation of c-Jun amino-terminal kinase (JNK), mitochondrial damage and ER stress. BGP-15, a hydroximic acid derivative, has been reported to have hepatoprotective effects in APAP overdose induced liver damage. Effect of BGP-15 was further investigated on mitochondria in APAP-overdose induced acute liver injury in mice.

View Article and Find Full Text PDF

Glycogen particle is an intracellular organelle, which serves as a carbohydrate reserve in various cells. The function of glycogen is not entirely known in several cell types. Glycogen can be mobilized for different purposes, which can be related to cellular metabolic needs, intracellular redox state, metabolic state of the whole organism depending on regulatory aspects and also on cell functions.

View Article and Find Full Text PDF

Mitochondria fragmentation destabilizes mitochondrial membranes, promotes oxidative stress and facilitates cell death, thereby contributing to the development and the progression of several mitochondria-related diseases. Accordingly, compounds that reverse mitochondrial fragmentation could have therapeutic potential in treating such diseases. BGP-15, a hydroxylamine derivative, prevents insulin resistance in humans and protects against several oxidative stress-related diseases in animal models.

View Article and Find Full Text PDF

Activation of various interacting stress kinases, particularly the c-Jun N-terminal kinases (JNK), and a concomitant phosphorylation of insulin receptor substrate 1 (IRS-1) at serine 307 play a central role both in insulin resistance and in β-cell dysfunction. IRS-1 phosphorylation is stimulated by elevated free fatty acid levels through different pathways in obesity. A series of novel pyrido[2,3-d]pyrimidin-7-one derivatives were synthesized as potential antidiabetic agents, preventing IRS-1 phosphorylation at serine 307 in a cellular model of lipotoxicity and type 2 diabetes.

View Article and Find Full Text PDF

Augmenter of liver regeneration (ALR) contributes to mitochondrial biogenesis, maintenance and to the physiological operation of mitochondria. The depletion of ALR has been widely studied and had serious consequences on the mitochondrial functions. However the inverse direction, the effect of the depletion of mitochondrial electron transfer chain and mtDNA on ALR expression has not been investigated yet.

View Article and Find Full Text PDF

The recently described form of programmed cell death, ferroptosis can be induced by agents causing GSH depletion or the inhibition of GPX4. Ferroptosis clearly shows distinct morphologic, biochemical and genetic features from apoptosis, necrosis and autophagy. Since NAPQI the highly reactive metabolite of the widely applied analgesic and antipyretic, acetaminophen induces a cell death which can be characterized by GSH depletion, GPX inhibition and caspase independency the involvement of ferroptosis in acetaminophen induced cell death has been investigated.

View Article and Find Full Text PDF

Polyunsaturated fatty acids are susceptible to peroxidation and they yield various degradation products, including the main α,β-unsaturated hydroxyalkenal, 4-hydroxy-2,3-trans-nonenal (HNE) in oxidative stress. Due to its high reactivity, HNE interacts with various macromolecules of the cell, and this general toxicity clearly contributes to a wide variety of pathological conditions. In addition, growing evidence suggests a more specific function of HNE in electrophilic signaling as a second messenger of oxidative/electrophilic stress.

View Article and Find Full Text PDF

Lipotoxicity refers to cellular dysfunctions caused by elevated free fatty acid levels playing a central role in the development and progression of obesity related diseases. Saturated fatty acids cause insulin resistance and reduce insulin production in the pancreatic islets, thereby generating a vicious cycle, which potentially culminates in type 2 diabetes. The underlying endoplasmic reticulum (ER) stress response can lead to even β-cell death (lipoapoptosis).

View Article and Find Full Text PDF

Abdominal obesity is referred for as a common pathogenic root of multiple risk factors, which include insulin resistance, dyslipidemia, hypertension, and a pro-atherogenic and pro-inflammatory state. Irrespective of its psychiatric side effects, rimonabant through blocking cannabinoid-1 receptor (CB1R) induces an increase in whole body insulin sensitivity. The aim of this work was to study the effect of selected doses of another insulin sensitizer compound BGP-15, and rimonabant on insulin resistance in Zucker obese rats with a promise of inducing insulin sensitization together at lower doses than would have been expected by rimonabant alone.

View Article and Find Full Text PDF

Conversion of cortisone to cortisol by 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) in the endoplasmic reticulum (ER) of the target cells is a major determinant of glucocorticoid action, and plays an important role in the development of obesity-related diseases. Inhibition of 11βHSD1 activity is, therefore, considered as a promising novel strategy for the treatment of metabolic syndrome and diabetes. Tea flavanols and their major representative, epigallocatechin gallate are known as antiobesity and antidiabetic agents.

View Article and Find Full Text PDF
Article Synopsis
  • NADH cytochrome b5 oxidoreductase (Ncb5or) is crucial for protecting β-cells from oxidative stress, and its absence in lean mice leads to insulin-dependent diabetes due to β-cell death.
  • The study investigates how certain natural missense mutations in the human NCB5OR gene affect protein expression, specifically focusing on two mutations (p.E87G and p.E93G).
  • Results show that these mutations significantly decrease Ncb5or protein levels by increasing its degradation, suggesting they could have important implications for human diabetes and related health issues.
View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress is a regulatory mechanism that allows cells to adapt to a series of metabolic, redox, and other environmental changes. The role of ER stress was first identified in the maintenance of proteostasis. It has since been shown that ER stress is also critical to the regulation of lipid homeostasis, membrane turnover, and autophagy.

View Article and Find Full Text PDF

Morphine is converted to morphine 3-β-D-glucuronide (M3G) by the UDP-glucuronosyltransferase Ugt2b1 in the endoplasmic reticulum (ER) of rat liver. Because of its luminal localization, UGT activity requires UDP-glucuronate import and glucuronide export across the ER membrane. The former transport is generally considered to be rate limiting and to explain the latency of UGT activities in intact microsomal vesicles.

View Article and Find Full Text PDF

Many ATP binding cassette (ABC) transporters are important regulators of lipid homeostasis and have been implicated in keratinocyte lipid transport. Ultraviolet (UV) light exposure is a known epidermal stressor, which amongst other effects causes lipid alterations and defective lamellar body biogenesis. To elucidate the background of these lipid changes we studied the effect of UVB light on ABC transporter expression.

View Article and Find Full Text PDF

According to the "membrane sensor" hypothesis, the membrane's physical properties and microdomain organization play an initiating role in the heat shock response. Clinical conditions such as cancer, diabetes and neurodegenerative diseases are all coupled with specific changes in the physical state and lipid composition of cellular membranes and characterized by altered heat shock protein levels in cells suggesting that these "membrane defects" can cause suboptimal hsp-gene expression. Such observations provide a new rationale for the introduction of novel, heat shock protein modulating drug candidates.

View Article and Find Full Text PDF

Atypical antipsychotic drugs (AAPD) are widely used to treat severe psychiatric disorders, have well documented metabolic side effects such as disturbances in glucose metabolism, insulin resistance and weight gain. It has been shown that BGP-15, a hydroxylamine derivative with insulin sensitizing activity can prevent AAPD provoked fat accumulation in adipocyte cultures, and insulin resistance in animal experiments and in healthy volunteers. The aim of this study was to compare the preventive effect of BGP-15 with conventional oral antidiabetics on metabolic side effects of AAPDs.

View Article and Find Full Text PDF

The metabolic syndrome, one of the most common clinical conditions in recent times, represents a combination of cardiometabolic risk determinants, including central obesity, glucose intolerance, insulin resistance, dyslipidemia, non-alcoholic fatty liver disease and hypertension. Prevalence of the metabolic syndrome is rapidly increasing worldwide as a consequence of common overnutrition and consequent obesity. Although a unifying picture of the pathomechanism is still missing, the key role of the pre-receptor glucocorticoid activation has emerged recently.

View Article and Find Full Text PDF

Through their reactive oxygen species (ROS) producing function, NADPH oxidase (NOX) enzymes have been linked to several oxidative stress related diseases. In our recently published paper [1] we have already shown the NOX4 inhibitory effect of diverse, molecule sub-libraries and their biological importance. We also presented our work connected to potential anti-tumour molecules and the relationship between their biological activity and physico-chemical properties [2].

View Article and Find Full Text PDF

Weight gain and dysfunction of glucose and lipid metabolism are well-known side effects of atypical antipsychotic drugs (AAPD). Here, we address the question whether a heat-shock protein (HSP) co-inducer, insulin sensitizer drug candidate, BGP-15, can prevent AAPD-induced glucose, lipid, and weight changes. We also examined how an AAPD alters HSP expression and whether BGP-15 alters that expression.

View Article and Find Full Text PDF

(-)-Epigallocatechin-3-gallate (EGCG) has been found to trigger the unfolded protein response (UPR) likely due to the inhibition of glucosidase II, a key enzyme of glycoprotein processing and quality control in the endoplasmic reticulum (ER). These findings strongly suggest that EGCG interferes with glycoprotein maturation and sorting in the ER. This hypothesis was tested in SK-Mel28 human melanoma cells by assessing the effect of EGCG and deoxynojirimycin (DNJ) on the synthesis of two endogenous glycoproteins.

View Article and Find Full Text PDF

Significance: Proteins destined to secretion and exposure on the cell surface are synthesized and processed in the extracellular-like environment of the endoplasmic reticulum (ER) of higher eukaryotic cells. Compartmentation plays a crucial role in the post-translational modifications, such as oxidative folding and N-glycosylation in the ER lumen. Transport of the required intermediates across the ER membrane and maintenance of the luminal redox conditions and Ca(2+) ion concentration are indispensable for appropriate protein maturation.

View Article and Find Full Text PDF

Significance: The lumen of the endoplasmic reticulum (ER) constitutes a separate compartment with a special proteome and metabolome. The characteristic redox environment required for the optimal functioning of local pathways is defined by the redox couples of the main electron carriers. These molecules, glutathione, pyridine nucleotides, and ascorbic acid, are present within the ER, but their composition, concentration, and redox state are characteristically different from those observed in other subcellular compartments.

View Article and Find Full Text PDF