ACS Appl Mater Interfaces
May 2018
In this study, the properties of indium oxynitride (InON) semiconductor films grown by reactive radio frequency sputtering were examined both experimentally and theoretically. Also, thin-film transistors (TFTs) incorporating InON as the active layer were evaluated for the first time. It is found that InON films exhibit high stability upon prolonged exposure to air and the corresponding TFTs are more stable when subjected to negative bias illumination stress, compared to devices based on indium oxide (InO) or zinc oxynitride (ZnON) semiconductors.
View Article and Find Full Text PDFThin-film transistors (TFTs) based on multilayer molybdenum diselenide (MoSe ) synthesized by modified atmospheric pressure chemical vapor deposition (APCVD) exhibit outstanding photoresponsivity (103.1 A W ), while it is generally believed that optical response of multilayer transition metal dichalcogenides (TMDs) is significantly limited due to their indirect bandgap and inefficient photoexcitation process. Here, the fundamental origin of such a high photoresponsivity in the synthesized multilayer MoSe TFTs is sought.
View Article and Find Full Text PDFSilicon dioxide (SiO) films were synthesized by plasma-enhanced atomic layer deposition (PEALD) using BTBAS [bis(tertiarybutylamino) silane] as the precursor and O plasma as the reactant, at a temperature range from 50 to 200 °C. While dielectric constant values larger than 3.7 are obtained at all deposition temperatures, the leakage current levels are drastically reduced to below 10 A at temperatures above 150 °C, which are similar to those obtained in thermally oxidized and PECVD grown SiO.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2017
In this study, we propose a method for improving the stability of multilayer MoS field-effect transistors (FETs) by O plasma treatment and AlO passivation while sustaining the high performance of bulk MoS FET. The MoS FETs were exposed to O plasma for 30 s before AlO encapsulation to achieve a relatively small hysteresis and high electrical performance. A MoO layer formed during the plasma treatment was found between MoS and the top passivation layer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2017
In this work, the effects of fluorine incorporation in high mobility zinc oxynitride (ZnON) semiconductor are studied by both theoretical calculations and experimental evaluation of thin film transistors (TFTs). From density functional theory (DFT) calculations, fluorine acts as a carrier suppressor in the ZnON matrix when it substitutes a nitrogen vacant site (V). Thin films of ZnON and ZnON:F were grown by reactively cosputtering Zn metal and ZnF targets, and their electrical, physical, and chemical characteristics were studied.
View Article and Find Full Text PDFZinc tin oxide (Zn-Sn-O, or ZTO) semiconductor layers were synthesized based on solution processes, of which one type involves the conventional spin coating method and the other is grown by mist chemical vapor deposition (mist-CVD). Liquid precursor solutions are used in each case, with tin chloride and zinc chloride (1:1) as solutes in solvent mixtures of acetone and deionized water. Mist-CVD ZTO films are mostly polycrystalline, while those synthesized by spin-coating are amorphous.
View Article and Find Full Text PDFZinc oxynitride (ZnON) semiconductors are suitable for high performance thin-film transistors (TFTs) with excellent device stability under negative bias illumination stress (NBIS). The present work provides a first approach on the optimization of electrical performance and stability of the TFTs via studying the resonant interaction between anions or vacancies in ZnON. It is found that the incorporation of nitrogen increases the concentration of nitrogen vacancies (Vs), which generate larger concentrations of free electrons with increased mobility.
View Article and Find Full Text PDFWe synthesized ZnO nanorods (NRs) using simple hydrothermal method, with the simultaneous incorporation of gallium (Ga) and indium (In), in addition, investigated the co-doping effect on the morphology, microstructure, electronic structure, and electrical/optical properties. The growth behavior of the doped NRs was affected by the nuclei density and polarity of the (001) plane. The c-axis parameter of the co-doped NRs was similar to that of undoped NRs due to the compensated lattice distortion caused by the presence of dopants that are both larger (In) and smaller (Ga) than the host Zn cations.
View Article and Find Full Text PDFWrinkle-free graphene was used to form the source-drain electrodes in thin film transistors based on a zinc tin oxide (ZTO) semiconductor. A 10 nm thick titanium adhesion layer was applied prior to transferring a conductive graphene film on top of it by chemical detachment. The formation of an interlayer oxide between titanium and graphene allows the achievement of uniform surface roughness over the entire substrate area.
View Article and Find Full Text PDFIndium oxide (InO) films were deposited at low processing temperature (150 °C) by atomic layer deposition (ALD) using [1,1,1-trimethyl-N-(trimethylsilyl)silanaminato]indium (InCA-1) as the metal precursor and hydrogen peroxide (HO) as the oxidant. As-deposited InO exhibits a metallic conductor-like behavior owing to a relatively high free-carrier concentration. In order to control the electron density in InO layers, NO plasma treatment was carried out on the film surface.
View Article and Find Full Text PDFField-effect mobility of a polymer semiconductor film is known to be enhanced when the gate dielectric interfacing with the film is weakly polarizable. Accordingly, gate dielectrics with lower dielectric constant (k) are preferred for attaining polymer field-effect transistors (PFETs) with larger mobilities. At the same time, it is also known that inducing more charge carriers into the polymer semiconductor films helps in enhancing their field-effect mobility, because the large number of traps presented in such a disorder system can be compensated substantially.
View Article and Find Full Text PDFAs a route to the production of organic-inorganic hybrid multilayers, the growth behavior of molecular layer deposited (MLD) alucone and atomic layer deposited (ALD) Al2O3 films on top of each other was examined. MLD alucone films were prepared using trimethyl aluminum and diethylene glycol precursors, the latter resulting in faster growth rates than ethylene glycol precursors. The sensitivity of individual alucone films with respect to ambient exposure was found to be related to moisture permeation and hydration reactions, of which the mechanism is studied by density functional theory calculations.
View Article and Find Full Text PDFHigh-mobility zinc oxynitride (ZnON) semiconductors were grown by RF sputtering using a Zn metal target in a plasma mixture of Ar, N2, and O2 gas. The RF power and the O2 to N2 gas flow rates were systematically adjusted to prepare a set of ZnON films with different relative anion contents. The carrier density was found to be greatly affected by the anion composition, while the electron mobility is determined by a fairly complex mechanism.
View Article and Find Full Text PDFLarge-area and highly crystalline CVD-grown multilayer MoSe2 films exhibit a well-defined crystal structure (2H phase) and large grains reaching several hundred micrometers. Multilayer MoSe2 transistors exhibit high mobility up to 121 cm(2) V(-1) s(-1) and excellent mechanical stability. These results suggest that high mobility materials will be indispensable for various future applications such as high-resolution displays and human-centric soft electronics.
View Article and Find Full Text PDFHexagonal molybdenum diselenide (MoSe2) multilayers were grown by chemical vapor deposition (CVD). A relatively high pressure (>760 Torr) was used during the CVD growth to achieve multilayers by creating multiple nuclei based on the two-dimensional crystal growth model. Our CVD-grown multilayer MoSe2 thin-film transistors (TFTs) show p-type-dominant ambipolar behaviors, which are attributed to the formation of Se vacancies generated at the decomposition temperature (650 °C) after the CVD growth for 10 min.
View Article and Find Full Text PDFPersistent photoconduction (PPC) is a phenomenon that limits the application of oxide semiconductor thin-film transistors (TFTs) in optical sensor-embedded displays. In the present work, a study on zinc oxynitride (ZnON) semiconductor TFTs based on the combination of experimental results and device simulation is presented. Devices incorporating ZnON semiconductors exhibit negligible PPC effects compared with amorphous In-Ga-Zn-O (a-IGZO) TFTs, and the difference between the two types of materials are examined by monochromatic photonic C-V spectroscopy (MPCVS).
View Article and Find Full Text PDFTwo types of tin dioxide (SnO2) films were grown by mist chemical vapor deposition (Mist-CVD), and their electrical properties were studied. A tetragonal phase is obtained when methanol is used as the solvent, while an orthorhombic structure is formed with acetone. The two phases of SnO2 exhibit different electrical properties.
View Article and Find Full Text PDF