Publications by authors named "Jozelia G Ferreira"

Sensing of dietary triacylglycerol in the proximal small intestine results in physiological, hormonal and behavioural responses. However, the exact physiological pathways linking intestinal fat sensing to food intake and the activation of brain circuits remain to be identified. In this study we examined the role of triacylglycerol digestion for intestinal fat sensing, and compared the effects of the triacylglycerol digestion products, fatty acids and 2-monoacylglycerol, on behavioural, hormonal and dopaminergic responses in behaving mice.

View Article and Find Full Text PDF

Sugars that contain glucose, such as sucrose, are generally preferred to artificial sweeteners owing to their post-ingestive rewarding effect, which elevates striatal dopamine (DA) release. While the post-ingestive rewarding effect, which artificial sweeteners do not have, signals the nutrient value of sugar and influences food preference, the neural circuitry that mediates the rewarding effect of glucose is unknown. In this study, we show that optogenetic activation of melanin-concentrating hormone (MCH) neurons during intake of the artificial sweetener sucralose increases striatal dopamine levels and inverts the normal preference for sucrose vs sucralose.

View Article and Find Full Text PDF

It is well established that animals including humans attribute greater reinforcing value to glucose-containing sugars compared to their non-caloric counterparts, generally termed 'artificial sweeteners'. However, much remains to be determined regarding the physiological signals and brain systems mediating the attribution of greater reinforcing value to sweet solutions that contain glucose. Here we show that disruption of glucose utilization in mice produces an enduring inhibitory effect on artificial sweetener intake, an effect that did not depend on sweetness perception or aversion.

View Article and Find Full Text PDF

Excessive intake of dietary fats leads to diminished brain dopaminergic function. It has been proposed that dopamine deficiency exacerbates obesity by provoking compensatory overfeeding as one way to restore reward sensitivity. However, the physiological mechanisms linking prolonged high-fat intake to dopamine deficiency remain elusive.

View Article and Find Full Text PDF

Background: Mounting evidence suggests that overeating may be conceptualized within the same behavioral and neurobiological framework as drug addiction. One potentially important difference between overeating versus drug abuse refers to the sensory stimulation of oral receptors by palatable foods, a feature that may be required for reinforcement during intake. Likewise, postingestive effects and caloric content of food also contribute to reinforcing behavior and might influence the development of compulsive eating behavior.

View Article and Find Full Text PDF

It is not known whether behaviors unrelated to feeding are affected by hypothalamic regulators of hunger. We found that impairment of Agouti-related protein (AgRP) circuitry by either Sirt1 knockdown in AgRP-expressing neurons or early postnatal ablation of these neurons increased exploratory behavior and enhanced responses to cocaine. In AgRP circuit-impaired mice, ventral tegmental dopamine neurons exhibited enhanced spike timing-dependent long-term potentiation, altered amplitude of miniature postsynaptic currents and elevated dopamine in basal forebrain.

View Article and Find Full Text PDF

Post-ingestive factors are known to strongly modulate feeding behavior by providing feedback signals to the central nervous system on the current physiological state of the organism. Of particular interest is the identification of the physiological pathways that permit the brain to sense post-ingestive signals. We will review recent evidence supporting the concept that direct stimulation of the gastrointestinal tract with nutrients induces release of the catecholamine neurotransmitter dopamine.

View Article and Find Full Text PDF

Animals, including humans, can achieve precise regulation of caloric intake by adjusting consumption in response to covert changes in energy density. It remains unknown, however, whether the presence of flavour cues are required for the ability to maintain constant caloric intake. Also unknown are the brain circuits that may function as the central calorie monitors that control adaptive adjustments in energy intake.

View Article and Find Full Text PDF

Although the umami compound monosodium glutamate (MSG) is a widely used flavor enhancer, controversy still persists regarding the effects of MSG intake on body weight. It has been claimed, in particular, that chronic MSG intake may result in excessive body weight gain and obesity. In this study we assessed the effects of chronic (16 weeks) ad libitum MSG on body weight and metabolism of C57BL6/J mice.

View Article and Find Full Text PDF

The gustatory system allows the brain to monitor the presence of chemicals in the oral cavity and initiate appropriate responses of acceptance or rejection. Among such chemicals are the nutrients that must be rapidly recognized and ingested for immediate oxidation or storage. In the periphery, the gustatory system consists of a highly efficient sensing mechanism, where distinct cell types express receptors that bind specifically to chemicals associated with one particular taste quality.

View Article and Find Full Text PDF

When allowed to choose between different macronutrients, most animals display a strong attraction toward carbohydrates compared with proteins. It remains uncertain, however, whether this food selection pattern depends primarily on the sensory properties intrinsic to each nutrient or, alternatively, metabolic signals can act independently of the hedonic value of sweetness to stimulate elevated sugar intake. Here we show that Trpm5(-/-) mice, which lack the cellular mechanisms required for sweet and several forms of l-amino acid taste transduction, develop a robust preference for d-glucose compared with isocaloric l-serine independently of the perception of sweetness.

View Article and Find Full Text PDF