Publications by authors named "Jozefczuk E"

Background: Higher levels of plasma glycine are linked to a reduced risk, while increased levels of total branched-chain amino acids (tBCAAs) are associated with a higher risk of essential hypertension and coronary heart disease (CHD). As these metabolic components are interconnected, analyzing the tBCAAs/glycine ratio may help to understand their interplay in the pathogenesis of cardiovascular disease.

Methods: The Cox regression approach was combined with the development of novel genetic tools for assessments of associations between plasma metabolomic data (glycine, tBCAAs, and tBCAAs/glycine ratio) from the UK Biobank and the development of hypertension and CHD.

View Article and Find Full Text PDF

Background: Systemic inflammation may cause endothelial activation, mediate local inflammation, and accelerate progression of atherosclerosis. We examined whether the levels of circulating inflammatory cytokines reflect local vascular inflammation and oxidative stress in two types of human arteries.

Methods: Human internal mammary artery (IMA) was obtained in 69 patients undergoing coronary artery bypass graft (CABG) surgery and left anterior descending (LAD) artery was obtained in 17 patients undergoing heart transplantation (HTx).

View Article and Find Full Text PDF

Hypertension (HT) is a modifiable risk factor for life-threatening cardiovascular diseases (CVDs) including coronary artery disease, heart failure, or stroke. Despite significant progress in understanding the pathophysiological mechanisms of the disease, the molecular pathways targeted by HT treatment remain largely unchanged. This warrants the need for finding novel biomarkers, which are causally related to persistent high blood pressure (BP) and may be pharmacologically targeted.

View Article and Find Full Text PDF

Background: Although degenerative aortic valve stenosis (DAS) is the most prevalent growth-up congestive heart valve disease, still little known about relationships between DAS severity, vascular stiffness (VS), echocardiographic parameters, and serum biomarkers in patients undergoing transcatheter (TAVR) or surgical aortic valve replacement (SAVR). The objective of this study was to identify biomarkers associated with DAS severity, and those that are associated with cardiovascular death (CVD) and episodes of chronic heart failure (CHF) exacerbation. Methods: A total of 137 patients with initially moderate-to-severe DAS were prospectively evaluated for the relationship between DAS severity, baseline VS, and serum biomarkers (uPAR, GDF-15, Gal-3, IL-6Rα, ET-1, PCSK9, RANTES/CCL5, NT-proBNP, and hs-TnT), and were followed-up for 48 months.

View Article and Find Full Text PDF

Cardiovascular disease is the major cause of morbidity and mortality in breast cancer survivors. Chemotherapy contributes to this risk. We aimed to define the mechanisms of long-term vascular dysfunction caused by neoadjuvant chemotherapy (NACT) and identify novel therapeutic targets.

View Article and Find Full Text PDF

Sphingosine kinase-1 (Sphk1) and its product, sphingosine-1-phosphate (S1P) are important regulators of cardiac growth and function. Numerous studies have reported that Sphk1/S1P signaling is essential for embryonic cardiac development and promotes pathological cardiac hypertrophy in adulthood. However, no studies have addressed the role of Sphk1 in postnatal cardiomyocyte (CM) development so far.

View Article and Find Full Text PDF

Sphingosine-1-phosphate (S1P) is a signaling lipid, synthetized by sphingosine kinases (SPHK1 and SPHK2), that affects cardiovascular function in various ways. S1P signaling is complex, particularly since its molecular action is reliant on the differential expression of its receptors (S1PR1, S1PR2, S1PR3, S1PR4, S1PR5) within various tissues. Significance of this sphingolipid is manifested early in vertebrate development as certain defects in S1P signaling result in embryonic lethality due to defective vasculo- or cardiogenesis.

View Article and Find Full Text PDF

Background: High blood pressure (BP) is a risk factor for cardiovascular morbidity and mortality. While BP is regulated by the function of kidney, vasculature, and sympathetic nervous system, recent experimental data suggest that immune cells may play a role in hypertension.

Methods: We studied the relationship between major white blood cell types and blood pressure in the UK Biobank population and used Mendelian randomization (MR) analyses using the ≈750 000 UK-Biobank/International Consortium of Blood Pressure-Genome-Wide Association Studies to examine which leukocyte populations may be causally linked to BP.

View Article and Find Full Text PDF

High blood pressure is a risk factor for cardiovascular diseases. Ang II (angiotensin II), a key pro-hypertensive hormone, mediates target organ consequences such as endothelial dysfunction and cardiac hypertrophy. S1P (sphingosine-1-phosphate), produced by Sphk1 (sphingosine kinase 1), plays a pivotal role in the pathogenesis of hypertension and downstream organ damage, as it controls vascular tone and regulates cardiac remodeling.

View Article and Find Full Text PDF

Up to 80% of all ischemic strokes (IS) attributed to internal carotid athero-occlusive artery stenosis (ICAS) are related to a thromboembolic mechanism. One athero-occlusive ischemic event increases the risk for ischemia in another vascular territory, resulting from inflammation within the atherosclerotic plaque induced by cytokines. Thus, ultrasonographic characteristics of vulnerable plaques in ICAS, including plaque echolucency and ulceration might correspond to cytokine activity.

View Article and Find Full Text PDF

Aims: MicroRNA-378a, highly expressed in skeletal muscles, was demonstrated to affect myoblasts differentiation and to promote tumour angiogenesis. We hypothesized that miR-378a could play a pro-angiogenic role in skeletal muscle and may be involved in regeneration after ischaemic injury in mice.

Methods And Results: Silencing of miR-378a in murine C2C12 myoblasts did not affect differentiation but impaired their secretory angiogenic potential towards endothelial cells.

View Article and Find Full Text PDF

Heme oxygenase-1 (HO-1; encoded by Hmox1), a downstream target of the Nrf2 transcription factor, has been postulated to be a negative regulator of osteoclasts (OCLs) differentiation. Here, we further explored such a hypothesis by examining HO-1 effects in different stages of osteoclastogenesis. We confirmed the inhibition of the expression of OCLs markers by Nrf2.

View Article and Find Full Text PDF