This study focuses on the diagnostic analysis of cartilage damage in the knee joint based on acoustic signals generated by the joint. The research utilizes a combination of advanced signal processing techniques, specifically empirical mode decomposition (EEMD) and detrended fluctuation analysis (DFA), alongside convolutional neural networks (CNNs) for classification and detection tasks. Acoustic signals, often reflecting the mechanical behavior of the joint during movement, serve as a non-invasive diagnostic tool for assessing the cartilage condition.
View Article and Find Full Text PDFThis study examined the influence of the effective embedment depth of undercut anchors and the diameter of their heads on the formation of the so-called cone failure angle α. Cone failure formation during simulated anchor pull-out tests was analyzed numerically using the Finite Element Method (FEM) with the ABAQUS software and the XFEM algorithm. The analysis was conducted for three sizes of undercut anchor heads and four embedment depths.
View Article and Find Full Text PDFUndercutting anchors are structural elements used in construction and geotechnics to stabilize both structures and soils. Their main applications include stabilizing slopes and embankments, reinforcing foundations, and providing support during tunnel construction and other underground works. The authors propose the use of these anchors in rock mass detachment technology.
View Article and Find Full Text PDFThe COVID-19 pandemic demanded changes in healthcare systems worldwide. The lockdown brought about difficulties in healthcare access. However, trauma still required further attention considering its modifications.
View Article and Find Full Text PDFIntroduction And Objective: Head and neck injuries are a heterogeneous group in terms of both clinical course and prognosis. For years, there have been attempts to create an ideal tool to predict the outcomes and severity of injuries. The aim of this study was evaluation of the use of selected artificial intelligence methods for outcome predictions of head and neck injuries.
View Article and Find Full Text PDFPreviously published articles on anchors have mainly focused on determining the pullout force of the anchor (depending on the strength parameters of the concrete), the geometric parameters of the anchor head, and the effective anchor depth. The extent (volume) of the so-called failure cone has often addressed as a secondary matter, serving only to approximate the size of the zone of potential failure of the medium in which the anchor is installed. For the authors of these presented research results, from the perspective of evaluating the proposed stripping technology, an important aspect was the determination of the extent and volume of the stripping, as well as the determination of why the defragmentation of the cone of failure favors the removal of the stripping products.
View Article and Find Full Text PDFThis paper presents the results of an experimental study of adhesive joint strength with consideration of the inaccuracy of the hardener dosage, in the context of evaluating the degradation of joints when used either at ambient or elevated temperatures. The butt joint strength characteristics were assessed for two types of adhesives-rigid and flexible-and two curing scenarios-with and without heat curing. An excess hardener was shown to be significantly more unfavourable than its deficiency, which can ultimately be considered as a recommendation for forming epoxy adhesive joint assemblies.
View Article and Find Full Text PDFThe paper presents the results of experimental strength tests of specimens made of two commercially available bone cements subjected to compression, that is a typical variant of load of this material during use in the human body, after it has been used for implantation of prostheses or supplementation of bone defects. One of the factors analysed in detail was the duration of cement seasoning in Ringer's solution that simulates the aggressive environment of the human body and material degradation caused by it. The study also focused on the parameters of quantitative deviation from the recommended proportions of liquid (MMA monomer, accelerator and stabiliser) and powder (PMMA prepolymer and initiator) components, i.
View Article and Find Full Text PDFCartilage loss due to osteoarthritis (OA) in the patellofemoral joint provokes pain, stiffness, and restriction of joint motion, which strongly reduces quality of life. Early diagnosis is essential for prolonging painless joint function. Vibroarthrography (VAG) has been proposed in the literature as a safe, noninvasive, and reproducible tool for cartilage evaluation.
View Article and Find Full Text PDFOsteoarthritis (OA) is a chronic, progressive disease which has over 300 million cases each year. Some of the main symptoms of OA are pain, restriction of joint motion and stiffness of the joint. Early diagnosis and treatment can prolong painless joint function.
View Article and Find Full Text PDFRevision surgeries several years after the implantation of the prosthesis are unfavorable from the patient's point of view as they expose him to additional discomfort, to risk of complications and are expensive. One of the factors responsible for the aseptic loosening of the prosthesis is the gradual degradation of the cement material as a result of working under considerable loads, in an aggressive environment of the human body. Contaminants present in the surgical field may significantly affect the durability of the bone cement and, consequently, of the entire bone-cement-prosthesis system.
View Article and Find Full Text PDFThis paper presents the idea and provides an analysis of the rock breakout mechanism utilizing an undercut/breakout anchor. The new design is a modification of a standard undercut anchor, which is commonly found in applications involving steel-to-concrete anchorage. Of particular concern was the effect of the rock breakout strength on the anchor-pullout-induced failure of the rock mass.
View Article and Find Full Text PDFProblems concerning the influence of the geometric parameters of an undercutting anchor on the range of the failure zone of rock medium during the pulling out of the anchor constitute one of the aspects that arouse the interest of authors due to attempts to use undercutting anchors in the process of rock lump separation. This method is considered an alternative to the existing methods of separation, especially in special cases of mining technologies. This article presents the results of numerical investigations into the effect of changes in the head geometry that occur as a result of wear on the conical part of the undercutting anchor and the extent of failure of the rock medium during its pulling out.
View Article and Find Full Text PDFThis study presents an analysis of the impact of doping bone cement with saline. The two-ingredient cement, made right before the surgery, is subject to various kinds of organic contaminants and liquids used in the operating area, such as saline used to cleanse or cool it, during the process of mounting the prosthesis or bone-filling procedures. The processes of experimental destructive testing and statistical analysis have shown that, depending on the degree of saline doping, the static compressive strength parameters may greatly improve (with a low degree of contamination) or significantly worsen (when the contamination degree is higher).
View Article and Find Full Text PDFThe paper presents the results of a numerical analysis (FEM) describing the effect of the undercutting head angle on the formation of the rock mass failure zone during the initial stages of failure propagation. The research was carried out in the context of developing a technology for rock extraction by controlled pull-out of undercut anchors installed in the rock mass. The focus was on the initial stage of crack propagation and its trajectory for anchors embedded at an assumed constant depth and a value of the friction coefficient of the rock against the anchor head.
View Article and Find Full Text PDFThis paper presents the results of a numerical FEM (Finite Element Method) simulation of the formation of a rock failure zone in its initial stage of development. The influence of rock parameters, such as the Young's modulus, Poisson's ratio and friction factor of the rock in the contact zone with the working surface of the undercut anchor head, were taken into account. The obtained results of FEM simulations were compared with the results of field tests conducted in Polish mining plants extracting rock raw materials.
View Article and Find Full Text PDFBone cements play a key role in present-day surgery, including the implantation of hip and knee joint endoprostheses. The correct and durable bonding of the prosthesis to the bone is affected by both the static strength characteristics determined in accordance with ISO 5833:2002 and the resistance to long-term exposure to an aggressive environment of the human body and the impurities that may be introduced into the cement during implementation. The study attempts to demonstrate statistically significant degradation of cement as a result of the seasoning of cement samples in Ringer's solution with simultaneous contamination of the material with saline solution, which is usually present in the surgical field (e.
View Article and Find Full Text PDFThe purpose of the study was to test the usefulness of deep learning artificial neural networks and statistical modeling in predicting the strength of bone cements with defects. The defects are related to the introduction of admixtures, such as blood or saline, as contaminants into the cement at the preparation stage. Due to the wide range of applications of deep learning, among others in speech recognition, bioinformation processing, and medication design, the extent was checked to which it is possible to obtain information related to the prediction of the compressive strength of bone cements.
View Article and Find Full Text PDFThis study employs the numerical analysis and experimental testing to analyze the fracturing mechanics and the size of rock cones formed in the pull-out of a system of three undercut anchors. The research sets out to broaden the knowledge regarding: (a) the potential of the undercut anchor pull-out process in mining of the rock mass, and (b) estimating the load-carrying capacity of anchors embedded in the rock mass (which is distinctly different from the anchorage to concrete). Undercut anchors are most commonly applied as fasteners of steel components in concrete structures.
View Article and Find Full Text PDFAn objective of this study was to investigate the group effect in rock cone failure occurring in pull-out with the use of 3D finite element analysis. At present, undercut anchors are typically applied as structural fasteners of steel elements in concrete buildings; however, new areas for their use are being explored. The reported study set out to evaluate the use of undercut anchors in special-purpose rock mining, e.
View Article and Find Full Text PDF