Publications by authors named "Jozef Genzor"

The phase transition of the classical Ising model on the Sierpiński carpet, which has the fractal dimension log_{3}^{}8≈1.8927, is studied by an adapted variant of the higher-order tensor renormalization group method. The second-order phase transition is observed at the critical temperature T_{c}^{}≈1.

View Article and Find Full Text PDF

The critical behavior of the Ising model on a fractal lattice, which has the Hausdorff dimension log_{4}12≈1.792, is investigated using a modified higher-order tensor renormalization group algorithm supplemented with automatic differentiation to compute relevant derivatives efficiently and accurately. The complete set of critical exponents characteristic of a second-order phase transition was obtained.

View Article and Find Full Text PDF

We generalize a tensor-network algorithm to study the thermodynamic properties of self-similar spin lattices constructed on a square-lattice frame with two types of couplings, J_{1}^{} and J_{2}^{}, chosen to transform a regular square lattice (J_{1}^{}=J_{2}^{}) onto a fractal lattice if decreasing J_{2}^{} to zero (the fractal fully reconstructs when J_{2}^{}=0). We modified the higher-order tensor renormalization group (HOTRG) algorithm for this purpose. Single-site measurements are performed by means of so-called impurity tensors.

View Article and Find Full Text PDF

We investigate relations between spatial properties of the free energy and the radius of Gaussian curvature of the underlying curved lattice geometries. For this purpose we derive recurrence relations for the analysis of the free energy normalized per lattice site of various multistate spin models in the thermal equilibrium on distinct non-Euclidean surface lattices of the infinite sizes. Whereas the free energy is calculated numerically by means of the corner transfer matrix renormalization group algorithm, the radius of curvature has an analytic expression.

View Article and Find Full Text PDF

The phase transition of the Ising model is investigated on a planar lattice that has a fractal structure. On the lattice, the number of bonds that cross the border of a finite area is doubled when the linear size of the area is extended by a factor of 4. The free energy and the spontaneous magnetization of the system are obtained by means of the higher-order tensor renormalization group method.

View Article and Find Full Text PDF