Aldosterone exerts some of its effects not by binding to mineralocorticoid receptors, but rather by acting via G protein-coupled estrogen receptors (GPER). To determine if aldosterone binds directly to GPER, we studied the ability of aldosterone to compete for the binding of [ H] 2-methoxyestradiol ([ H] 2-ME), a high potency GPER-selective agonist. We used GPER gene transfer to engineer Sf9-cultured insect cells to express GPER.
View Article and Find Full Text PDFEstrogens are important regulators of cardiovascular function. Some of estrogen's cardiovascular effects are mediated by a G-protein-coupled receptor mechanism, namely, G-protein-coupled estrogen receptor (GPER). Estradiol-mediated regulation of vascular cell programmed cell death reflects the balance of the opposing actions of GPER versus estrogen receptor α (ERα).
View Article and Find Full Text PDFAm J Physiol Cell Physiol
March 2013
The importance of the rapid vascular effects of aldosterone is increasingly appreciated. Through these rapid pathways, aldosterone has been shown to regulate vascular contractility, cell growth, and apoptosis. In our most recent studies, we demonstrated the effects of aldosterone on cell growth and contractility in vascular smooth muscle cells.
View Article and Find Full Text PDFIt is increasingly appreciated that steroid hormones such as aldosterone and estradiol can mediate important cardiovascular effects. Many of these effects occur over a time course not consistent with the genomic actions of these hormones acting through classical nuclear receptors / transcription factors. Further, multiple receptors have been implicated in mediating these rapid effects of both aldosterone and estradiol, including a newly appreciated G-protein-coupled receptor, GPR30.
View Article and Find Full Text PDFIt has been increasingly appreciated that steroids elicit acute vascular effects through rapid, so-called nongenomic signaling pathways. Though aldosterone, for example, has been demonstrated to mediate rapid vascular effects via both mineralocorticoid receptor-dependent and -independent pathways, the mechanism(s) of this mineralocorticoid receptor-independent effect of aldosterone is yet to be determined. For estrogen, its rapid effects have been reported to be, at least in part, mediated via the 7-transmembrane-spanning, G protein-coupled receptor GPR30.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
November 2009
Recent studies suggest that the rapid and nongenomic effects of estradiol may be mediated through the G protein-coupled receptor dubbed GPR30 receptor. The present study examines the role of GPR30 versus a classical estrogen receptor (ERalpha) in mediating the growth regulatory effects of estradiol. GPR30 is readily detectable in freshly isolated vascular tissue but barely detectable in cultured vascular smooth muscle cells (VSMC).
View Article and Find Full Text PDFCompartmentation of cAMP signaling been demonstrated to be attributable to the structural association of protein kinase A (PKA) (via association with A-kinase anchoring proteins [AKAPs]) with phosphodiesterase and AKAP-dependent effector molecules. However, other mechanisms contributing to compartmentalization have not been rigorously explored, including the possibility that different isoforms of adenylyl cyclase (AC) may be functionally "compartmentalized" because of differential association with tethering or signaling molecules. To this end, we examined the effect of adenoviral transduction of representative AC isoforms (AC1, AC2, AC5, and AC6) on cellular cAMP production, PKA activation, extracellular signal-regulated kinase (ERK) activation, cell doubling and proliferation, as well as arborization responses (an index of cAMP-mediated cytoskeletal re-organization) in vascular smooth muscle cells.
View Article and Find Full Text PDFThe effects of vasodilator hormones acting through receptors linked to adenylyl cyclase are impaired in the hypertensive state. This has been ascribed to impaired receptor-G protein coupling. However, these receptors also act via effectors not linked to adenylyl cyclase activation.
View Article and Find Full Text PDFOligomerization plays an important role in endoplasmic reticulum processing and membrane insertion (and ultimately in regulation of function) of a number of transmembrane spanning proteins. Furthermore, it is known that adenylyl cyclases (ACs), critical regulators of cellular functions, associate into higher order (dimeric) forms. However, the importance of these higher order aggregates in regulating adenylyl cyclase activity or trafficking to the cell membrane is unclear.
View Article and Find Full Text PDF