Fluid flow at the microscale level exhibits a unique phenomenon that can be explored to fabricate microfluidic devices integrated with components that can perform various biological functions. In this manuscript, the importance of physics for microscale fluid dynamics using microfluidic devices has been reviewed. Microfluidic devices provide new opportunities with regard to spatial and temporal control over cell growth.
View Article and Find Full Text PDFControlled microscale transport is at the core of many scientific and technological advancements, including medical diagnostics, separation of biomolecules, etc., and often involves complex fluids. One of the challenges in this regard is to actuate flows at small scales in an energy efficient manner, given the strong viscous forces opposing fluid motion.
View Article and Find Full Text PDFIt is time for the healthcare industry to move from the era of "analyzing our health history" to the age of "managing the future of our health." In this article, we illustrate the importance of real-time analytics across the healthcare industry by providing a generic mechanism to reengineer traditional analytics expressed in the R programming language into Storm-based real-time analytics code. This is a powerful abstraction, since most data scientists use R to write the analytics and are not clear on how to make the data work in real-time and on high-velocity data.
View Article and Find Full Text PDF