Publications by authors named "Joyclyn Yee"

Background: Multiplex RT-PCR is a valuable technique used for pathogen identification, disease detection and relative quantification of gene expression. The simplification of this protocol into a one-step procedure saves time and reagents. However, intensive PCR optimization is often required to overcome competing undesired PCR primer extension during the RT step.

View Article and Find Full Text PDF

The polymerase chain reaction (PCR) is widely used for applications which require a high level of specificity and reliability, such as genetic testing, clinical diagnostics, blood screening, forensics and biodefense. Great improvements to PCR performance have been achieved by the use of Hot Start activation strategies that aim to prevent DNA polymerase extension until more stringent, higher temperatures are reached. Herein we present a novel Hot Start activation approach in PCR where primers contain one or two thermolabile, 4-oxo-1-pentyl (OXP) phosphotriester (PTE) modification groups at 3'-terminal and 3'-penultimate internucleotide linkages.

View Article and Find Full Text PDF

Several 3'-ether and 3'-ester derivatives of 2'-deoxyribonucleoside 5'-triphosphates (dNTPs) were prepared. These dNTP derivatives were not substrates for DNA polymerase and did not support primer extension at room temperature. However, by short pre-heating to 95 degrees C in PCR buffer, these 3'-modified dNTPs can be converted to corresponding unmodified natural dNTPs that efficiently support PCR amplification.

View Article and Find Full Text PDF