We previously reported on the importance of osteoactivin (OA/Gpnmb) in osteogenesis. In this study, we examined the role of OA in osteoclastogenesis, using mice with a nonsense mutation in the Gpnmb gene (D2J) and wild-type controls (D2J/Gpnmb(+)). In these D2J mice, micro-computed tomography and histomorphometric analyses revealed increased cortical thickness, whereas total porosity and eroded surface were significantly reduced in D2J mice compared with wild-type controls, and these results were corroborated by lower serum levels of CTX-1.
View Article and Find Full Text PDFWe have previously identified osteoactivin (OA), encoded by Gpnmb, as an osteogenic factor that stimulates osteoblast differentiation in vitro. To elucidate the importance of OA in osteogenesis, we characterized the skeletal phenotype of a mouse model, DBA/2J (D2J) with a loss-of-function mutation in Gpnmb. Microtomography of D2J mice showed decreased trabecular mass, compared to that in wild-type mice [DBA/2J-Gpnmb(+)/SjJ (D2J/Gpnmb(+))].
View Article and Find Full Text PDFCrit Rev Eukaryot Gene Expr
April 2011
Osteoactivin (OA) protein was discovered in bone cells a decade ago. Recent literature suggests that osteoactivin is crucial for the differentiation and functioning of different cell types, including bone-forming osteoblasts and bone-resorbing osteoclast cells. Here, we review the literature to date on various regulatory functions of osteoactivin, as well as its discovery, structure, expression, and function in different tissues and cells.
View Article and Find Full Text PDF