Publications by authors named "Joyce Tse"

Introduction: Atherosclerotic complications represent the leading cause of cardiovascular mortality globally. Dysfunction of endothelial cells (ECs) often initiates the pathological events in atherosclerosis.

Objectives: In this study, we sought to investigate the transcriptional profile of atherosclerotic aortae, identify novel regulator in dysfunctional ECs and hence provide mechanistic insights into atherosclerotic progression.

View Article and Find Full Text PDF

The imaginal disc has been an excellent model for the study of developmental gene regulation. In particular, long non-coding RNAs (lncRNAs) have gained widespread attention in recent years due to their important role in gene regulation. Their specific spatiotemporal expressions further support their role in developmental processes and diseases.

View Article and Find Full Text PDF

Diabetic vasculopathy is a major health problem worldwide. Peripheral arterial disease (PAD), and in its severe form, critical limb ischemia is a major form of diabetic vasculopathy with limited treatment options. Existing literature suggested an important role of PPARδ in vascular homeostasis.

View Article and Find Full Text PDF

Neonatal immunity is functionally immature and skewed towards a T2-driven, anti-inflammatory profile. This neonatal immunotolerance is partly driven by the type 2 cytokines: interleukin-4 (IL-4) and interleukin-13 (IL-13). Studies on neonatal cardiac regeneration reveal the beneficial role of an anti-inflammatory response in restoring cardiac function after injury.

View Article and Find Full Text PDF

A brief intervention using Zero-time Exercise (ZTEx), a foot-in-the-door approach, was developed to reduce sedentary behaviour and increase physical activity. ZTEx refers to the integration of simple strength- and stamina-enhancing physical activity into daily life, which can be done anytime, anywhere and by anyone. This paper presents the development, feasibility, and preliminary evidence for the effectiveness of this intervention under the Hong Kong Jockey Club FAMILY Project.

View Article and Find Full Text PDF

The originally published version of this Article contained an error in Figure 4. The bar chart in panel f was inadvertently replaced with a duplicate of the bar chart in panel e. This error has now corrected in both the PDF and HTML versions of the Article.

View Article and Find Full Text PDF

Glaucoma is the most prevalent neurodegenerative disease and a leading cause of blindness worldwide. The mechanisms causing glaucomatous neurodegeneration are not fully understood. Here we show, using mice deficient in T and/or B cells and adoptive cell transfer, that transient elevation of intraocular pressure (IOP) is sufficient to induce T-cell infiltration into the retina.

View Article and Find Full Text PDF

Regulating fluctuating endogenous nitric oxide (NO) levels is necessary for proper physiological functions. Aberrant NO pathways are implicated in a number of neurological disorders, including Alzheimer's disease (AD) and Parkinson's disease. The mechanism of NO in oxidative and nitrosative stress with pathological consequences involves reactions with reactive oxygen species (e.

View Article and Find Full Text PDF

As appreciation grows for the contribution of the tumor microenvironment to the progression of cancer, new evidence accumulates to support that the participation of stromal cells can extend beyond the local environment. Recently, Elkabets and colleagues demonstrated a systemic interaction between cancer cells and distant bone marrow cells to support the growth of otherwise indolent tumor cells at a secondary site, raising thought-provoking questions regarding the involvement of stromal cells in maintaining metastatic dormancy.

View Article and Find Full Text PDF

Many immune signaling pathways require activation of the Syk tyrosine kinase to link ligation of surface receptors to changes in gene expression. Despite the central role of Syk in these pathways, the Syk activation process remains poorly understood. In this work we quantitatively characterized the molecular mechanism of Syk activation in vitro using a real time fluorescence kinase assay, mutagenesis, and other biochemical techniques.

View Article and Find Full Text PDF

Understanding the principles of calmodulin (CaM) activation of target enzymes will help delineate how this seemingly simple molecule can play such a complex role in transducing Ca (2+)-signals to a variety of downstream pathways. In the work reported here, we use biochemical and biophysical tools and a panel of CaM constructs to examine the lobe specific interactions between CaM and CaMKII necessary for the activation and autophosphorylation of the enzyme. Interestingly, the N-terminal lobe of CaM by itself was able to partially activate and allow autophosphorylation of CaMKII while the C-terminal lobe was inactive.

View Article and Find Full Text PDF

Spleen tyrosine kinase (Syk) is a cytoplasmic tyrosine kinase that plays an important signaling role in several types of immune cells. To improve our understanding of the enzymology and activation mechanism of Syk, we characterized the steady state kinetics of Syk substrate phosphorylation. A new real time fluorescence kinase assay was employed that utilizes a nonnatural amino acid in the peptide substrate which undergoes an enhancement in fluorescence following phosphorylation.

View Article and Find Full Text PDF

Calmodulin (CaM) trapping by Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a phenomenon whereby the affinity of CaM for CaMKII increases >1000-fold following CaMKII autophosphorylation. The molecular basis of this effect is not entirely understood. Binding of CaM to the phosphorylated and the unphosphorylated states of CaMKII is well mimicked by the interaction of CaM with two different length peptides taken from the CaM-binding region of CaMKII, peptides we refer to as the long and intermediate peptides.

View Article and Find Full Text PDF

Every year about 500,000 people in the United States die as a result of cancer. Among them, 90% exhibit systemic disease with metastasis. Considering this high rate of incidence and mortality, it is critical to understand the mechanisms behind metastasis and identify new targets for therapy.

View Article and Find Full Text PDF