Using bioactive glasses (BGs) for bone reconstruction is a promising and expanding field of investigation in regenerative medicine. Therefore, the aim of this study was to assess the key features of the 100 most cited papers on BG in bone tissue engineering through bibliometric measures. A search was conducted in the Web of Science citation indexing database until October 2023.
View Article and Find Full Text PDFPoly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibers embedded with borate glasses of 45B5 composition doped with Co, Cu, and Zn (46.1 B₂O₃26.9-X CaO24.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2024
The development of bioactive membranes with bone repair properties is great interest in the field of tissue engineering. In this study, we aimed to fabricate and characterize a composite membrane composed of sol-gel synthesized bioceramics and electrospun polycaprolactone (PCL) fibers for bone tissue regeneration applications. The bioceramics were prepared using the sol-gel method with nitrate (N) and chloride (CL) as precursors.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2023
The development of nanoscale biomaterials associated with polymers has been growing over the years, due to their important structural characteristics for applications in biological systems. The present study aimed to produce and test polymeric scaffolds composed of polylactic acid (PLA) fibers associated with a 58S bioglass doped with therapeutic ions for use in tissue engineering. Three 58S Bioglass was obtained by the sol-gel route, pure and doped with 5% strontium and cobalt ions.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2023
The objective was to synthesize and characterize fine polycaprolactone (PCL) fibers associated with a new 58S bioglass obtained by the precipitated sol-gel route, produced by the electrospinning process in order to incorporate therapeutic ions (Mg and Li). In PCL/acetone solutions were added 7% pure bioglass, bioglass doped with Mg(NO ) and Li CO and were subjected to electrospinning process. The fibers obtained were characterized morphologically, chemically and biologically.
View Article and Find Full Text PDF