Intraduodenal infusion of levodopa-carbidopa intestinal gel by percutaneous endoscopic gastrostomy tube with jejunal extension is a treatment option to reduce motor and nonmotor complications in patients with advanced Parkinson's disease when oral therapy no longer provides sufficient benefit. Medication management is of central focus; however, there was no standardized patient education on stoma-site care and tube maintenance, leading to the development of stoma-site complications. As a quality improvement (QI) initiative, a standardized education and assessment pathway was developed and implemented in an urban academic outpatient clinic to enhance patient self-management and reduce stoma-site complications.
View Article and Find Full Text PDFDNA repair and DNA damage checkpoints work in concert to help maintain genomic integrity. In vivo data suggest that these two global responses to DNA damage are coupled. It has been proposed that the canonical 30 nucleotide single-stranded DNA gap generated by nucleotide excision repair is the signal that activates the ATR-mediated DNA damage checkpoint response and that the signal is enhanced by gap enlargement by EXO1 (exonuclease 1) 5' to 3' exonuclease activity.
View Article and Find Full Text PDFNucleotide excision repair is the sole mechanism for removing the major UV photoproducts from genomic DNA in human cells. In vitro with human cell-free extract or purified excision repair factors, the damage is removed from naked DNA or nucleosomes in the form of 24- to 32-nucleotide-long oligomers (nominal 30-mer) by dual incisions. Whether the DNA damage is removed from chromatin in vivo in a similar manner and what the fate of the excised oligomer was has not been known previously.
View Article and Find Full Text PDFReplication protein A (RPA) plays essential roles in DNA metabolism, including replication, checkpoint, and repair. Recently, we described an in vitro system in which the phosphorylation of human Chk1 kinase by ATR (ataxia telangiectasia mutated and Rad3-related) is dependent on RPA bound to single-stranded DNA. Here, we report that phosphorylation of other ATR targets, p53 and Rad17, has the same requirements and that RPA is also phosphorylated in this system.
View Article and Find Full Text PDFThe circadian clock is a global regulatory mechanism that confers daily rhythmicity on many biochemical and physiological functions, including DNA excision repair in mammalian organisms. Here, we investigated the effect of the circadian clock on the major DNA damage response pathways by using mouse cell lines mutated in genes encoding proteins in the positive (Bmal1, CLOCK) or negative (Cry 1/2, Per 1/2) arms of the transcription-translation feedback loop that generates the circadian clock. We find that cells mutated in these genes are indistinguishable from wild-type in their response to UV, ionizing radiation and mitomycin C.
View Article and Find Full Text PDFA wide range of environmental and carcinogenic agents form bulky lesions on DNA that are removed from the human genome in the form of short, ∼30-nucleotide oligonucleotides by the process of nucleotide excision repair. Although significant insights have been made regarding the mechanisms of damage recognition, dual incisions, and repair resynthesis during nucleotide excision repair, the fate of the dual incision/excision product is unknown. Using excision assays with both mammalian cell-free extract and purified proteins, we unexpectedly discovered that lesion-containing oligonucleotides are released from duplex DNA in complex with the general transcription and repair factor, Transcription Factor IIH (TFIIH).
View Article and Find Full Text PDFThe XPA (Xeroderma pigmentosum A) protein is one of the six core factors of the human nucleotide excision repair system. In this study we show that XPA is a rate-limiting factor in all human cell lines tested, including a normal human fibroblast cell line. The level of XPA is controlled at the transcriptional level by the molecular circadian clock and at the post-translational level by a HECT domain family E3 ubiquitin ligase called HERC2.
View Article and Find Full Text PDFSunlight UV exposure produces DNA photoproducts in skin that are repaired solely by nucleotide excision repair in humans. A significant fraction of melanomas are thought to result from UV-induced DNA damage that escapes repair; however, little evidence is available about the functional capacity of normal human melanocytes, malignant melanoma cells, and metastatic melanoma cells to repair UV-induced photoproducts in DNA. In this study, we measured nucleotide excision repair in both normal melanocytes and a panel of melanoma cell lines.
View Article and Find Full Text PDFCisplatin is one of the most commonly used anticancer drugs. It kills cancer cells by damaging their DNA, and hence cellular DNA repair capacity is an important determinant of its efficacy. Here, we investigated the repair of cisplatin-induced DNA damage in mouse liver and testis tissue extracts prepared at regular intervals over the course of a day.
View Article and Find Full Text PDFMammalian cells possess a cell-autonomous molecular clock which controls the timing of many biochemical reactions and hence the cellular response to environmental stimuli including genotoxic stress. The clock consists of an autoregulatory transcription-translation feedback loop made up of four genes/proteins, BMal1, Clock, Cryptochrome, and Period. The circadian clock has an intrinsic period of about 24 h, and it dictates the rates of many biochemical reactions as a function of the time of the day.
View Article and Find Full Text PDFReplication protein A (RPA) is a heterotrimeric protein complex required for a large number of DNA metabolic processes, including DNA replication and repair. An alternative form of RPA (aRPA) has been described in which the RPA2 subunit (the 32-kDa subunit of RPA and product of the RPA2 gene) of canonical RPA is replaced by a homologous subunit, RPA4. The normal function of aRPA is not known; however, previous studies have shown that it does not support DNA replication in vitro or S-phase progression in vivo.
View Article and Find Full Text PDFTobacco-specific nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and N'-nitrosonornicotine, are considered to be human carcinogens. Both compounds are metabolized to pyridyloxobutylating intermediates that react with DNA to form adducts such as 7-[4-(3-pyridyl)-4-oxobut-1-yl]guanine, O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]cytosine, O(2)-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxythymidine (O(2)-pobdT), O(6)-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxyguanosine (O(6)-pobdG), and 4-hydroxy-1-(3-pyridyl)-1-butanone-releasing adducts. The role of specific DNA adducts in the overall genotoxic activity of the pyridyloxobutylation pathway is not known.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2009
The circadian clock regulates the daily rhythms in the physiology and behavior of many organisms, including mice and humans. These cyclical changes at molecular and macroscopic levels affect the organism's response to environmental stimuli such as light and food intake and the toxicity and efficacy of chemo- and radiotherapeutic agents. In this work, we investigated the circadian behavior of the nucleotide excision repair capacity in the mouse cerebrum to gain some insight into the optimal circadian time for favorable therapeutic response with minimal side effects in cancer treatment with chemotherapeutic drugs that produce bulky adducts in DNA.
View Article and Find Full Text PDFWe have identified unique chemical and biological properties of a cationic monofunctional platinum(II) complex, cis-diammine(pyridine)chloroplatinum(II), cis-[Pt(NH(3))(2)(py)Cl](+) or cDPCP, a coordination compound previously identified to have significant anticancer activity in a mouse tumor model. This compound is an excellent substrate for organic cation transporters 1 and 2, also designated SLC22A1 and SLC22A2, respectively. These transporters are abundantly expressed in human colorectal cancers, where they mediate uptake of oxaliplatin, cis-[Pt(DACH)(oxalate)] (DACH = trans-R,R-1,2-diaminocyclohexane), an FDA-approved first-line therapy for colorectal cancer.
View Article and Find Full Text PDFA mathematical model of human nucleotide excision repair was constructed and validated. The model incorporates cooperative damage recognition by RPA, XPA, and XPC followed by three kinetic proofreading steps by the TFIIH transcription/repair factor. The model yields results consistent with experimental data regarding excision rates of UV photoproducts by the reconstituted human excision nuclease system as well as the excision of oligonucleotides from undamaged DNA.
View Article and Find Full Text PDFNucleotide excision repair is a multicomponent, multistep enzymatic system that removes a wide spectrum of DNA damage by dual incisions in the damaged strand on both sides of the lesion. The basic steps are damage recognition, dual incisions, resynthesis to replace the excised DNA, and ligation. Each step has been studied in vitro using cell extracts or highly purified repair factors and radiolabeled DNA of known sequence with DNA damage at a defined site.
View Article and Find Full Text PDFDNA-protein cross-links are generated by both endogenous and exogenous DNA damaging agents, as intermediates during normal DNA metabolism, and during abortive base excision repair. Cross-links are relatively common lesions that are lethal when they block progression of DNA polymerases. DNA-protein cross-links may be broadly categorized into four groups by the DNA and protein chemistries near the cross-link and by the source of the cross-link: DNA-protein cross-links may be found (1) in nicked DNA at the 3' end of one strand (topo I), (2) in nicked DNA at the 5' end of one strand (pol beta), (3) at the 5' ends of both strands adjacent to nicks in close proximity (topo II; Spo 11), and (4) in one strand of duplex DNA (UV irradiation; bifunctional carcinogens and chemotherapeutic agents).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2006
DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this study, we investigated the mechanism of recognition and repair of protein-DNA and oligopeptide-DNA crosslinks by the human excision nuclease.
View Article and Find Full Text PDFXeroderma pigmentosum is characterized by increased sensitivity of the affected individuals to sunlight and light-induced skin cancers and, in some cases, to neurological abnormalities. The disease is caused by a mutation in genes XPA through XPG and the XP variant (XPV) gene. The proteins encoded by the XPA, -B, -C, -D, -F, and -G genes are required for nucleotide excision repair, and the XPV gene encodes DNA polymerase eta, which carries out translesion DNA synthesis.
View Article and Find Full Text PDFIn humans UV-induced cyclobutane thymine dimers are excised by the joint action of six repair factors, RPA, XPA, XPC, TFIIH, XPG, and XPF.ERCC1. Yet, in vitro assays show that none of these six factors is capable of detectably discriminating thymine dimer-containing DNA from undamaged DNA.
View Article and Find Full Text PDFThe cyclobutane thymine dimer is the major DNA lesion induced in human skin by sunlight and is a primary cause of skin cancer, the most prevalent form of cancer in the Northern Hemisphere. In humans, the only known cellular repair mechanism for eliminating the dimer from DNA is nucleotide excision repair. Yet the mechanism by which the dimer is recognized and removed by this repair system is not known.
View Article and Find Full Text PDFMol Cell Biol
August 2002
Human nucleotide excision repair is initiated by six repair factors (XPA, RPA, XPC-HR23B, TFIIH, XPF-ERCC1, and XPG) which sequentially assemble at sites of DNA damage and effect excision of damage-containing oligonucleotides. We here describe the molecular anatomy of the human excision nuclease assembled at the site of a psoralen-adducted thymine. Three polypeptides, primarily positioned 5' to the damage, are in close physical proximity to the psoralen lesion and thus are cross-linked to the damaged DNA: these proteins are RPA70, RPA32, and the XPD subunit of TFIIH.
View Article and Find Full Text PDF