Publications by authors named "Joyce P Y Mak"

PARP inhibitors have emerged as effective chemotherapeutic agents for BRCA1/BRCA2-deficient cancers. Another DNA damage response protein, ATM, is also increasingly being recognized as a target for synthetic lethality with PARP inhibitors. As ATM functions in both cell cycle arrest and DNA repair after DNA damage, how cells respond to inhibition of ATM and PARP1 is yet to be defined precisely.

View Article and Find Full Text PDF

Nasopharyngeal carcinoma (NPC) is a rare but highly invasive cancer. As radiotherapy is the primary treatment for NPC, this offers a rationale to investigate if uncoupling the DNA damage responses can sensitize this cancer type. The G2 DNA damage checkpoint is controlled by a cascade of protein kinases: ATM/ATR, which phosphorylates CHK1/CHK2, which in turn phosphorylates WEE1.

View Article and Find Full Text PDF

Mitosis is choreographed by a number of protein kinases including polo-like kinases and Aurora kinases. As these kinases are frequently dysregulated in cancers, small-molecule inhibitors have been developed for targeted anticancer therapies. Given that PLK1 and Aurora kinases possess both unique functions as well as co-regulate multiple mitotic events, whether pharmacological inhibition of these kinases together can enhance mitotic catastrophe remains an outstanding issue to be determined.

View Article and Find Full Text PDF

The ATR-CHK1-WEE1 kinase cascade's functions in the DNA damage checkpoints are well established. Moreover, its roles in the unperturbed cell cycle are also increasingly being recognized. In this connection, a number of small-molecule inhibitors of ATR, CHK1, and WEE1 are being evaluated in clinical trials.

View Article and Find Full Text PDF

Dovitinib (TKI258; formerly CHIR-258) is an orally bioavailable inhibitor of multiple receptor tyrosine kinases. Interestingly, Dovitinib triggered a G2 /M arrest in cancer cell lines from diverse origins including HeLa, nasopharyngeal carcinoma, and hepatocellular carcinoma. Single-cell analysis revealed that Dovitinib promoted a delay in mitotic exit in a subset of cells, causing the cells to undergo mitotic slippage.

View Article and Find Full Text PDF