Single-cell RNA-sequencing (scRNAseq) is revolutionizing biomedicine, propelled by advances in methodology, ease of use, and cost reduction of library preparation. Over the past decade, there have been remarkable technical improvements in most aspects of single-cell transcriptomics. Yet, little to no progress has been made in advancing RNase inhibition despite maintained RNA integrity being critical during cell collection, storage, and cDNA library generation.
View Article and Find Full Text PDFUnlabelled: The mammalian olfactory neuronal lineage is regenerative, and accordingly, maintains a population of pluripotent cells that replenish olfactory sensory neurons and other olfactory cell types during the life of the animal. Moreover, in response to acute injury, the early transit amplifying cells along the olfactory sensory neuronal lineage are able to de-differentiate to shift resources in support of tissue restoration. In order to further explore plasticity of various cellular stages along the olfactory sensory neuronal lineage, we challenged the epigenetic stability of two olfactory placode-derived cell lines that model immature olfactory sensory neuronal stages.
View Article and Find Full Text PDFThe mammalian olfactory system consists of sensory neurons with specialized odorant-binding capability accomplished by mutually exclusive odorant receptor (OR) expression. Mutually exclusive OR expression is a complex multi-step process regulated by a number of cis and trans factors, including pan-silencing of all OR genes preceding the robust and stable expression of the one OR selected in each sensory neuron. We transfected two olfactory-placode-derived cell lines modeling immature odorant sensory neurons, as well as the GD25 fibroblast cell line, with episomes containing CMV-driven GFP and TK-driven hygromycin reporter genes.
View Article and Find Full Text PDF