Publications by authors named "Joyce Nirmala"

Triphenyl phosphate (TPP) and polystyrene nanoplastics (PSNPs) are prevalent freshwater contaminants obtained mainly from food packaging, textiles and electronics. Algal extracellular polymeric substances (EPS), a part of natural organic matter, may influence these pollutants' behaviour and toxicity. The presence of EPS can enhance the aggregation of TPP-PSNP mixtures, and reduce the bioavailability, and thus the toxicity potential.

View Article and Find Full Text PDF

In recent years, a growing concern has emerged regarding the environmental implications of flame retardants (FRs) like tetrabromobisphenol-A (TBBPA) and graphene family nanomaterials (GFNs), such as graphene, graphene oxide (GO), and reduced graphene oxide (rGO), on marine biota. Despite these substances' well-established individual toxicity profiles, there is a notable gap in understanding the physicochemical interactions within the binary mixtures and consequent changes in the toxicity potential. Therefore, our research focuses on elucidating the individual and combined toxicological impacts of TBBPA and GFNs on the marine alga Chlorella sp.

View Article and Find Full Text PDF

The possible adverse effects of engineered iron oxide nanoparticles, especially magnetite (FeO NP), on human health and the environment, have raised concerns about their transport and behavior in soil and water systems. Accumulating these NPs in the environment can substantially affect soil and water quality and the well-being of aquatic and terrestrial organisms. Therefore, it is essential to examine the factors that affect FeO NP transportation and behavior in soil and water systems to determine their possible environmental fate.

View Article and Find Full Text PDF

The unsustainable manufacturing, utilization and inadequate handling of plastics have led to a surge in global plastic pollution. In recent times, there has been increasing concern about the plausible hazards associated with exposure to micro/nanoplastics (M/NPs). As aquatic systems are considered to be the likely sink for M/NPs, it is crucial to comprehend their environmental behavior.

View Article and Find Full Text PDF

Cancer is known as the most dangerous disease in the world in terms of mortality and lack of effective treatment. Research on cancer treatment is still active and of great social importance. Since 1930, chemotherapeutics have been used to treat cancer.

View Article and Find Full Text PDF

Introduction: Plants have always been a significant source of natural active components with biological properties. Celery seed oil (extracted from ) has several potential applications, but its therapeutic uses in the form of nanoemulsion formulation need to be investigated further in order to meet the demand in cancer treatment, and to alleviate the prevailing crisis arising from increased antimicrobial resistance.

Methods: The therapeutic potential of celery seed oil was investigated through the formulation and testing of a nanoemulsion developed with Tween 80 (a non-ionic surfactant) and the utilization of an ultrasonication technique.

View Article and Find Full Text PDF

Background And Study: Cumin seed oil (extracted from ) has many applications but conclusive evidence of its therapeutic uses has not been presented. This study has explored the anticancer and antibacterial properties of the seed oil.

Methods: The cumin nanoemulsion was prepared with Tween 80 non-ionic surfactant employing ultra-sonication technology.

View Article and Find Full Text PDF

Background And Purpose: The essential oil derived from clove buds ( has been used as a chemopreventive agent in Ayurvedic medicine. The antiviral, antibacterial, and anticancer properties of its chemo-skeleton have motivated this study to explore its efficacy in pharmaceutics.

Methods: Nanoscale-based emulsions were prepared by employing a spontaneous emulsification technique through self-assembly using varying concentrations of Tween 20 and Tween 80 surfactants.

View Article and Find Full Text PDF

The plant derived essential oil nanoemulsion was prepared using a mixture of components containing eucalyptus oil as organic phase, water as continuous phase, and non ionic surfactant, Tween 80, as emulsifier at a particular proportion of 1:1 v/v%. The ultrasonication was applied for varied processing time from 0 to 30 min to study the effect of time on the formation of nanoemulsion and physical stability of formulation by this method. The transparency and stability of emulsion was enhanced when the sonication time was increased compared to hand blender emulsion.

View Article and Find Full Text PDF

Azithromycin, an important member of the azalide subclass is effective against both Gram-positive and Gram-negative organisms. Certain physicochemical properties of the drug like poor water solubility and relatively low bioavailability of 37% due to incomplete absorption after ingestion, aroused the need for the development of a novel drug delivery system to enhance the solubilization potential and antibacterial activity against Staphylococcus aureus at a very low concentration. Cinnamon oil (Cinnamonum zeylanicum)-based microemulsion system formulated using non-ionic surfactant, Tween 20, and water was characterized.

View Article and Find Full Text PDF

In the current study, two aspects concerning (i) the cytotoxicity potential of TiO₂ nanoparticles (NPs) toward freshwater algal isolate Scenedesmus obliquus and (ii) the potential detoxification of NPs by the microalgae were assessed under light (UV-illumination) and dark conditions at low exposure levels (≤1 μg/mL), using sterile freshwater as the test medium. The statistically significant reduction in cell viability, increase in reactive oxygen species production and membrane permeability (light vs. dark) suggested photo-induced toxicity of TiO₂ NPs.

View Article and Find Full Text PDF

An eco-friendly approach to the synthesis of silver nanoparticles (AgNPs) by extracellular components of Streptomyces albogriseolus has been reported. The isolated actinobacteria were genotypically identified by 16S rRNA sequencing analysis, and the morphology was observed by high-resolution scanning electron microscopy. The preliminary characterization of synthesized nanoparticles was carried out using ultraviolet-visible spectrophotometer.

View Article and Find Full Text PDF

Candida albicans is a common fungal pathogen that causes systemic and superficial infections in most immunocompromised patients. Fluconazole, a synthetic triazole antifungal agent, is the most prescribed drug used in treating this pathogen. But because of its poor solubilization in water and the emergence of resistant strains against this antimycotic drug, we aimed at devising a unique microemulsion drug delivery system for fluconazole against candidiasis.

View Article and Find Full Text PDF

The current study deals with the formulation and characterization of bio-based oil in water nanoemulsion and its potential antibacterial activity. A typical v/v% of eucalyptus oil (16.66%), Tween 80 (16.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Joyce Nirmala"

  • - Joyce Nirmala's recent research primarily focuses on the environmental impact and toxicological assessments of various nanomaterials and their interactions with pollutants, specifically investigating how different substances modify toxicity potentials in aquatic organisms.
  • - Her studies highlight the effects of algal extracellular polymeric substances on polystyrene nanoplastics and triphenyl phosphate mixtures, demonstrating how these natural components can mitigate toxicity in freshwater microalgae, specifically Chlorella sp.
  • - Additionally, Nirmala's work explores the transport behavior of iron oxide nanoparticles in different media and assesses the ecological implications of micro/nanoplastics in aquatic environments, emphasizing the need for understanding their behavior to address growing plastic pollution concerns.