Activin A functions in BMP signaling in two ways: it either engages ACVR1B to activate Smad2/3 signaling or binds ACVR1 to form a non-signaling complex (NSC). Although the former property has been studied extensively, the roles of the NSC remain unexplored. The genetic disorder fibrodysplasia ossificans progressiva (FOP) provides a unique window into ACVR1/Activin A signaling because in that disease Activin can either signal through FOP-mutant ACVR1 or form NSCs with wild-type ACVR1.
View Article and Find Full Text PDFConditional mutagenesis is becoming a method of choice for studying gene function, but constructing conditional alleles is often laborious, limited by target gene structure, and at times, prone to incomplete conditional ablation. To address these issues, we developed a technology termed conditionals by inversion (COIN). Before activation, COINs contain an inverted module (COIN module) that lies inertly within the antisense strand of a resident gene.
View Article and Find Full Text PDFVEGF and Angiopoietin-1 requisitely collaborate during blood vessel development. While Angiopoietin-1 obligately activates its Tie2 receptor, Angiopoietin-2 can activate Tie2 on some cells, while it blocks Tie2 activation on others. Our analysis of mice lacking Angiopoietin-2 reveals that Angiopoietin-2 is dispensable for embryonic vascular development but is requisite for subsequent angiogenic remodeling.
View Article and Find Full Text PDFCiliary neurotrophic factor (CNTF) supports motor neuron survival in vitro and in mouse models of motor neuron degeneration and was considered a candidate for the muscle-derived neurotrophic activity that regulates motor neuron survival during development. However, CNTF expression is very low in the embryo, and CNTF gene mutations in mice or human do not result in notable abnormalities of the developing nervous system. We have generated and directly compared mice containing null mutations in the genes encoding CNTF or its receptor (CNTFR alpha).
View Article and Find Full Text PDFWe recently proposed that ciliary neurotrophic factor (CNTF) shares two receptor components with a generally acting cytokine, leukemia inhibitory factor (LIF), but that CNTF also requires a third receptor component (CNTFR alpha) that is mostly restricted to the nervous system in its expression. Here we demonstrate that a transfected CNTFR alpha gene is sufficient to confer CNTF responsiveness upon hemopoietic cells normally responsive only to LIF, providing evidence that CNTFR alpha is a required receptor component that uniquely characterizes CNTF-responding cells. Consistent with this notion, CNTFR alpha expression could be localized to neurons within all known peripheral targets of CNTF.
View Article and Find Full Text PDFCultured astrocytes are known to possess a range of neurotrophic activities in culture. In order to examine which factors may be responsible for these activities, we have examined the expression of the genes for four known neurotrophic factors-ciliary neurotrophic factor (CNTF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3)-in purified astrocyte cultures derived from neonatal rat hippocampus. Hippocampal astrocytes were found to express mRNA for three neurotrophic factors-CNTF, NGF and NT3-at significantly higher levels than other cultured cell types or cell lines examined.
View Article and Find Full Text PDF