UvrD is a helicase vital for DNA replication and quality control processes. In its monomeric state, UvrD exhibits limited helicase activity, necessitating either dimerization or assistance from an accessory protein to efficiently unwind DNA. Within the DNA mismatch repair pathway, MutL plays a pivotal role in relaying the repair signal, enabling UvrD to unwind DNA from the strand incision site up to and beyond the mismatch.
View Article and Find Full Text PDFUnlabelled: AXIN1 is a major component of the β-catenin destruction complex and is frequently mutated in various cancer types, particularly liver cancers. Truncating AXIN1 mutations are recognized to encode a defective protein that leads to β-catenin stabilization, but the functional consequences of missense mutations are not well characterized. Here, we first identified the GSK3β, β-catenin, and RGS/APC interaction domains of AXIN1 that are the most critical for proper β-catenin regulation.
View Article and Find Full Text PDFSelf-renewal and differentiation of hematopoietic stem and progenitor cells (HSPCs) are carefully controlled by extrinsic and intrinsic factors, to ensure the lifelong process of hematopoiesis. Apurinic/apyrimidinic endonuclease 1 (APEX1) is a multifunctional protein implicated in DNA repair and transcriptional regulation. Although previous studies have emphasized the necessity of studying APEX1 in a lineage-specific context and its role in progenitor differentiation, no studies have assessed the role of APEX1, nor its two enzymatic domains, in supporting adult HSPC function.
View Article and Find Full Text PDFCRISPR-Cas are prokaryotic adaptive immune systems. Cas nucleases generally use CRISPR-derived RNA guides to specifically bind and cleave DNA or RNA targets. Here, we describe the experimental characterization of a bacterial CRISPR effector protein Cas12m representing subtype V-M.
View Article and Find Full Text PDFDNA mismatch repair removes mis-incorporated bases after DNA replication and reduces the error rate a 100-1000-fold. After recognition of a mismatch, a large section of up to a thousand nucleotides is removed from the daughter strand followed by re-synthesis. How these opposite activities are coordinated is poorly understood.
View Article and Find Full Text PDFCorrect transcription is crucial for life. However, DNA damage severely impedes elongating RNA polymerase II, causing transcription inhibition and transcription-replication conflicts. Cells are equipped with intricate mechanisms to counteract the severe consequence of these transcription-blocking lesions.
View Article and Find Full Text PDFRapidly spreading new variants of SARS-CoV-2 carry multiple mutations in the viral spike protein which attaches to the angiotensin converting enzyme 2 (ACE2) receptor on host cells. Among these mutations are amino acid changes N501Y (lineage B.1.
View Article and Find Full Text PDFDNA mismatch repair detects and removes mismatches from DNA by a conserved mechanism, reducing the error rate of DNA replication by 100- to 1,000-fold. In this process, MutS homologs scan DNA, recognize mismatches and initiate repair. How the MutS homologs selectively license repair of a mismatch among millions of matched base pairs is not understood.
View Article and Find Full Text PDFThe Ku70/80 heterodimer binds to DNA ends and attracts other proteins involved in the non-homologous end-joining (NHEJ) pathway of DNA double-strand break repair. We developed a novel assay to measure DNA binding and release kinetics using differences in Förster resonance energy transfer (FRET) of the ECFP-Ku70/EYFP-Ku80 heterodimer in soluble and DNA end bound states. We confirmed that the relative binding efficiencies of various DNA substrates (blunt, 3 nucleotide 5' extension, and DNA hairpin) measured in the FRET assay reflected affinities obtained from direct measurements using surface plasmon resonance.
View Article and Find Full Text PDFCRISPR-Cas9 systems are enriched in human pathogenic bacteria and have been linked to cytotoxicity by an unknown mechanism. Here, we show that upon infection of human cells, secretes its Cas9 (CjeCas9) nuclease into their cytoplasm. Next, a native nuclear localization signal enables CjeCas9 nuclear entry, where it catalyzes metal-dependent nonspecific DNA cleavage leading to cell death.
View Article and Find Full Text PDFBackground & Aims: The β-catenin signaling pathway is one of the most commonly deregulated pathways in cancer cells. Amino acid substitutions within armadillo repeats 5 and 6 (K335, W383, and N387) of β-catenin are found in several tumor types, including liver tumors. We investigated the mechanisms by which these substitutions increase signaling and the effects on liver carcinogenesis in mice.
View Article and Find Full Text PDFDNA mismatch repair (MMR) maintains genome stability through repair of DNA replication errors. In Escherichia coli, initiation of MMR involves recognition of the mismatch by MutS, recruitment of MutL, activation of endonuclease MutH and DNA strand incision at a hemimethylated GATC site. Here, we studied the mechanism of communication that couples mismatch recognition to daughter strand incision.
View Article and Find Full Text PDFThe tumor suppressor BRCA2 is essential for homologous recombination (HR), replication fork stability, and DNA interstrand crosslink repair in vertebrates. We identify HSF2BP, a protein previously described as testis specific and not characterized functionally, as an interactor of BRCA2 in mouse embryonic stem cells, where the 2 proteins form a constitutive complex. HSF2BP is transcribed in all cultured human cancer cell lines tested and elevated in some tumor samples.
View Article and Find Full Text PDFOver the last decade, research on distinct types of CRISPR systems has revealed many structural and functional variations. Recently, several novel types of single-polypeptide CRISPR-associated systems have been discovered including Cas12a/Cpf1 and Cas13a/C2c2. Despite distant similarities to Cas9, these additional systems have unique structural and functional features, providing new opportunities for genome editing applications.
View Article and Find Full Text PDFThe potential effects of non-ionizing electromagnetic fields (EMFs), such as those emitted by power-lines (in extremely low frequency range), mobile cellular systems and wireless networking devices (in radio frequency range) on human health have been intensively researched and debated. However, how exposure to these EMFs may lead to biological changes underlying possible health effects is still unclear. To reveal EMF-induced molecular changes, unbiased experiments (without a priori focusing on specific biological processes) with sensitive readouts are required.
View Article and Find Full Text PDFThe tumor suppressor BRCA2 is a large multifunctional protein mutated in 50-60% of familial breast cancers. BRCA2 interacts with many partners and includes multiple regions with potentially disordered structure. In homology directed DNA repair BRCA2 delivers RAD51 to DNA resulting in removal of RPA and assembly of a RAD51 nucleoprotein filament.
View Article and Find Full Text PDFThe microtubule (MT) cytoskeleton forms a dynamic filamentous network that is essential for many processes, including mitosis, cell polarity and shape, neurite outgrowth and migration, and ciliogenesis [1, 2]. MTs are built up of α/β-tubulin heterodimers, and their dynamic behavior is in part regulated by tubulin-associated proteins (TAPs). Here we describe a novel system to study mammalian tubulins and TAPs.
View Article and Find Full Text PDFDNA mismatch repair (MMR) is an evolutionarily-conserved process responsible for the repair of replication errors. In Escherichia coli, MMR is initiated by MutS and MutL, which activate MutH to incise transiently-hemimethylated GATC sites. MMR efficiency depends on the distribution of these GATC sites.
View Article and Find Full Text PDFDNA mismatch repair influences the outcome of recombination events between diverging DNA sequences. Here we discuss how mismatch repair proteins are active in different homologous recombination subpathways and specific reaction steps, resulting in differential modulation of these recombination events, with a focus on the mechanism of heteroduplex rejection during the inhibition of recombination between slightly diverged (homeologous) DNA sequences.
View Article and Find Full Text PDF