Publications by authors named "Joyce Cheung-Flynn"

Peripheral artery disease is commonly treated with balloon angioplasty, a procedure involving minimally invasive, transluminal insertion of a catheter to the site of stenosis, where a balloon is inflated to open the blockage, restoring blood flow. However, peripheral angioplasty has a high rate of restenosis, limiting long-term patency. Therefore, angioplasty is sometimes paired with delivery of cytotoxic drugs like paclitaxel to reduce neointimal tissue formation.

View Article and Find Full Text PDF

This protocol outlines an acute respiratory distress model utilizing centrally administered oleic acid infusion in Yorkshire pigs. Prior to experimentation, each pig underwent general anesthesia, endotracheal intubation, and mechanical ventilation, and was equipped with bilateral jugular vein central vascular access catheters. Oleic acid was administered through a dedicated pulmonary artery catheter at a rate of 0.

View Article and Find Full Text PDF

This protocol describes an acute volume overload porcine model for adult Yorkshire pigs and piglets. Both swine ages undergo general anesthesia, endotracheal intubation, and mechanical ventilation. A central venous catheter and an arterial catheter are placed via surgical cutdown in the external jugular vein and carotid artery, respectively.

View Article and Find Full Text PDF

Subarachnoid hemorrhage (SAH) due to the rupture of an intracranial aneurysm leads to delayed vasospasm and neuroischemia, which can result in profound neurologic deficit and death. Therapeutic options after SAH are currently limited to hemodynamic optimization and nimodipine, which have limited clinical efficacy. Experimental SAH results in cerebral vasospasm have demonstrated the downregulation of nitric oxide (NO)-protein kinase G (PKG) signaling elements.

View Article and Find Full Text PDF

Sepsis is a devastating disease with high morbidity and mortality and no specific treatments. The pathophysiology of sepsis involves a hyperinflammatory response and release of damage-associated molecular patterns (DAMPs), including adenosine triphosphate (ATP), from activated and dying cells. Purinergic receptors activated by ATP have gained attention for their roles in sepsis, which can be pro- or anti-inflammatory depending on the context.

View Article and Find Full Text PDF

Vascular procedures, such as stenting, angioplasty, and bypass grafting, often fail due to intimal hyperplasia (IH), wherein contractile vascular smooth muscle cells (VSMCs) dedifferentiate to synthetic VSMCs, which are highly proliferative, migratory, and fibrotic. Previous studies suggest MAPK-activated protein kinase 2 (MK2) inhibition may limit VSMC proliferation and IH, although the molecular mechanism underlying the observation remains unclear. We demonstrated here that MK2 inhibition blocked the molecular program of contractile to synthetic dedifferentiation and mitigated IH development.

View Article and Find Full Text PDF

Subarachnoid hemorrhage (SAH) due to rupture of an intracranial aneurysm leads to vasospasm resulting in delayed cerebral ischemia. Therapeutic options are currently limited to hemodynamic optimization and nimodipine, which have marginal clinical efficacy. Nitric oxide (NO) modulates cerebral blood flow through activation of the cGMP-Protein Kinase G (PKG) pathway.

View Article and Find Full Text PDF

Vascular injury leads to membrane disruption, ATP release, and endothelial dysfunction. Increases in the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) and decreases in the phosphorylation of Niban, a protein implicated in ER stress and apoptosis, are associated with vascular injury. A cell permeant phosphopeptide mimetic of Niban (NiPp) was generated.

View Article and Find Full Text PDF
Article Synopsis
  • Elevated endothelial permeability during sepsis is linked to organ dysfunction and mortality, but the mechanisms behind this increase remain unclear.
  • Previous research indicated that cell-free hemoglobin (CFH) is found at high levels in sepsis patients and can increase lung microvascular permeability.
  • This study showed that CFH worsens outcomes in a mouse model of sepsis, contributing to higher mortality and inflammation while suggesting that CFH may be a potential target for treatment.
View Article and Find Full Text PDF

Peptides and biologics provide unique opportunities to modulate intracellular targets not druggable by conventional small molecules. Most peptides and biologics are fused with cationic uptake moieties or formulated into nanoparticles to facilitate delivery, but these systems typically lack potency due to low uptake and/or entrapment and degradation in endolysosomal compartments. Because most delivery reagents comprise cationic lipids or polymers, there is a lack of reagents specifically optimized to deliver cationic cargo.

View Article and Find Full Text PDF

Resuscitation with 0.9% Normal Saline (NS), a non-buffered acidic solution, leads to increased morbidity and mortality in the critically ill. The goal of this study was to determine the molecular mechanisms of endothelial injury after exposure to NS.

View Article and Find Full Text PDF
Article Synopsis
  • Subarachnoid hemorrhage (SAH) leads to vasospasm that doesn't respond well to typical treatments, highlighting the need for better solutions.
  • Changes in specific heat shock proteins (HSP20 and HSP27) occur in blood vessels after SAH, impacting their function.
  • This study utilized nanotechnology to adjust the levels of these heat shock proteins to investigate their effects on blood vessel responses, offering potential new targets for treating SAH-related vasospasm.
View Article and Find Full Text PDF

Herein, excipients are investigated to ameliorate the deleterious effects of lyophilization on peptide-polymer nano-polyplex (NP) morphology, cellular uptake, and bioactivity. The NPs are a previously-described platform technology for intracellular peptide delivery and are formulated from a cationic therapeutic peptide and the anionic, pH-responsive, endosomolytic polymer poly(propylacrylic acid) (PPAA). These NPs are effective when formulated and immediately used for delivery into cells and tissue, but they are not amenable to reconstitution following storage as a lyophilized powder due to aggregation.

View Article and Find Full Text PDF

A viable vascular endothelial layer prevents vasomotor dysfunction, thrombosis, inflammation, and intimal hyperplasia. Injury to the endothelium occurs during harvest and "back table" preparation of human saphenous vein prior to implantation as an arterial bypass conduit. A subfailure overstretch model of rat aorta was used to show that subfailure stretch injury of vascular tissue leads to impaired endothelial-dependent relaxation.

View Article and Find Full Text PDF

Standard harvest and preparation of human saphenous vein (HSV) for autologous coronary and peripheral arterial bypass procedures is associated with injury and increased oxidative stress that negatively affect graft performance. In this study we investigated the global metabolomic profiles of HSV before (unprepared; UP) and after standard vein graft preparation (AP). AP-HSV showed impaired vasomotor function that was associated with increased oxidative stress, phospholipid hydrolysis and energy depletion that are characteristic of mechanical and chemical injury.

View Article and Find Full Text PDF

The leading cause of synthetic graft failure includes thrombotic occlusion and intimal hyperplasia at the site of vascular anastomosis. Herein, we report a co-immobilization strategy of heparin and potent anti-neointimal drug (Mitogen Activated Protein Kinase II inhibitory peptide; MK2i) by using a tyrosinase-catalyzed oxidative reaction for preventing thrombotic occlusion and neointimal formation of synthetic vascular grafts. The binding of heparin-tyramine polymer (HT) onto the polycarprolactone (PCL) surface enhanced blood compatibility with significantly reduced protein absorption (64.

View Article and Find Full Text PDF

Human saphenous vein (HSV) is harvested and prepared prior to implantation as an arterial bypass graft. Injury and the response to injury from surgical harvest and preparation trigger cascades of molecular events and contribute to graft remodeling and intimal hyperplasia. Apoptosis is an early response after implantation that contributes the development of neointimal lesions.

View Article and Find Full Text PDF

Objectives: Unregulated intraoperative distension of human saphenous vein (SV) graft leads to supraphysiologic luminal pressures and causes acute physiologic and cellular injury to the conduit. The effect of distension on tissue viscoelasticity, a biophysical property critical to a successful graft, is not well described. In this investigation, we quantify the loss of viscoelasticity in SV deformed by distension and compare the results to tissue distended in a pressure-controlled fashion.

View Article and Find Full Text PDF

Background: Human saphenous veins used for arterial bypass undergo stretch injury at the time of harvest and preimplant preparation. Vascular injury promotes intimal hyperplasia, the leading cause of graft failure, but the molecular events leading to this response are largely unknown. This study investigated adenosine triphosphate (ATP) as a potential molecular mediator in the vascular response to stretch injury, and the downstream effects of the purinergic receptor, P2X7R, and p38 MAPK activation.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates how calcium deposits in human saphenous veins relate to endothelial function and demographic risk factors, using samples collected during coronary artery bypass graft surgery.
  • Out of 54 vein segments studied, 29.6% showed calcium deposits, which were linked to greater intimal thickness and compromised endothelial relaxation compared to non-calcified veins.
  • Significant patient risk factors for calcium deposition included older age and higher preoperative serum creatinine levels, suggesting a need for further research on how vein calcification affects graft success over time.*
View Article and Find Full Text PDF
Article Synopsis
  • - Intimal hyperplasia is the leading cause of failure in vein grafts, particularly those involving human saphenous veins, often due to injury during graft preparation; this study explores the use of Brilliant Blue FCF (FCF) as a potential treatment.
  • - Experiments showed that FCF inhibits the migration and proliferation of smooth muscle cells, both key factors in intimal hyperplasia, in both a cultured cell model and a rabbit graft model.
  • - The study concludes that using FCF during the preparation of vein grafts could help reduce intimal hyperplasia, thereby improving the success rate of surgeries that utilize human saphenous vein grafts.
View Article and Find Full Text PDF

Vascular stretch injury is associated with blunt trauma, vascular surgical procedures, and harvest of human saphenous vein for use in vascular bypass grafting. A model of subfailure overstretch in rat abdominal aorta was developed to characterize surgical vascular stretch injury. Longitudinal stretch of rat aorta was characterized .

View Article and Find Full Text PDF

Veins used as grafts in heart bypass or as access points in hemodialysis exhibit high failure rates, thereby causing significant morbidity and mortality for patients. Interventional or revisional surgeries required to correct these failures have been met with limited success and exorbitant costs, particularly for the US Centers for Medicare & Medicaid Services. Vein stenosis or occlusion leading to failure is primarily the result of neointimal hyperplasia.

View Article and Find Full Text PDF

Traditional methods of intraoperative human saphenous vein preparation for use as bypass grafts can be deleterious to the conduit. The purpose of this study was to characterize acute graft preparation injury, and to mitigate this harm via an improved preparation technique. Porcine saphenous veins were surgically harvested (unprepared controls, UnP) and prepared using traditional (TraP) and improved preparations (ImP).

View Article and Find Full Text PDF