Splice switching oligonucleotides (SSOs) are a class of single-stranded antisense oligonucleotides (ssONs) being used as gene therapeutics and demonstrating great therapeutic potential. The availability of biodegradable and biocompatible delivery vectors that could improve delivery efficiencies, reduce dosage, and, in parallel, reduce toxicity concerns could be advantageous for clinical translation. In this work we explored the use of quaternized amphiphilic chitosan-based vectors in nanocomplex formation and delivery of splice switching oligonucleotides (SSO) into cells, while providing insights regarding cellular uptake of such complexes.
View Article and Find Full Text PDFCationic polymers have recently attracted attention due to their proven potential for nonviral gene delivery. In this study, we report novel biocompatible nanocomplexes produced using chemically functionalized N,N,N-trimethyl chitosan (TMC) with different N-acyl chain lengths (C5-C18) associated with single-stranded oligonucleotides. The TMC derivatives were synthesized by covalent coupling reactions of quaternized chitosan with n-pentanoic (C5), n-decanoic (C10), and n-octadecanoic (C18) fatty acids, which were extensively characterized by Fourier transform-infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance ((1)H NMR).
View Article and Find Full Text PDFCarbohydrates and derivatives (such as glycolipids, glycoproteins) are of critical importance for cell structure, metabolism and functions. The effects of carbohydrate and lipid metabolic imbalances most often cause health disorders and diseases. In this study, new carbohydrate-based nanobioconjugates were designed and synthesized at room temperature using a single-step aqueous route combining chitosan and acyl-modified chitosan with fluorescent inorganic nanoparticles.
View Article and Find Full Text PDF