Diverse collections of lipids self-assemble into domains within biological membranes, and these domains are typically organized in both the transverse and lateral directions of the membrane. The ability of the membrane to link these domains across the membrane's interior grants cells control over features on the external cellular surface. Numerous hypothesized factors drive the cross-membrane (or transverse) coupling of lipid domains.
View Article and Find Full Text PDFLiving tissues dynamically reshape their internal cellular structures through carefully regulated cell-to-cell interactions during morphogenesis. These cellular rearrangement events, such as cell sorting and mutual tissue spreading, have been explained using the differential adhesion hypothesis, which describes the sorting of cells through their adhesive interactions with their neighbors. In this manuscript we explore a simplified form of differential adhesion within a bioinspired lipid-stabilized emulsion approximating cellular tissues.
View Article and Find Full Text PDFEngineered nanoparticles (NPs) possess diverse physical and chemical properties, which make them attractive agents for targeted cellular interactions within the human body. Once affiliated with the plasma membrane, NPs can become embedded within its hydrophobic core, which can limit the intended therapeutic functionality and affect the associated toxicity. As such, understanding the physical effects of embedded NPs on a plasma membrane is critical to understanding their design and clinical use.
View Article and Find Full Text PDFAdaptive and bioinspired droplet-based materials are built using the droplet interface bilayer (DIB) technique, assembling networks of lipid membranes through adhered microdroplets. The properties of these lipid membranes are linked to the properties of the droplets forming the interface. Consequently, rearranging the relative positions of the droplets within the network will also alter the properties of the lipid membranes formed between them, modifying the transmembrane exchanges between neighboring compartments.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2022
In this research, real-time monitoring of lipid membrane disruption is made possible by exploiting the dynamic properties of model lipid bilayers formed at oil-water interfaces. This involves tracking an electrical signal generated through rhythmic membrane perturbation translated into the adsorption and penetration of charged species within the membrane. Importantly, this allows for the detection of membrane surface interactions that occur prior to pore formation that may be otherwise undetected.
View Article and Find Full Text PDFThe cell membrane is a protective barrier whose configuration determines the exchange both between intracellular and extracellular regions and within the cell itself. Consequently, characterizing membrane properties and interactions is essential for advancements in topics such as limiting nanoparticle cytotoxicity. Characterization is often accomplished by recreating model membranes that approximate the structure of cellular membranes in a controlled environment, formed using self-assembly principles.
View Article and Find Full Text PDFA new method for quantifying lipid-lipid interactions within biomimetic membranes undergoing electrocompression is demonstrated by coupling droplet mechanics and membrane biophysics. The membrane properties are varied by altering the lipid packing through the introduction of cholesterol. Pendant drop tensiometry is used to measure the lipid monolayer tension at an oil-water interface.
View Article and Find Full Text PDFControlled transport within a network of aqueous subcompartments provides a foundation for the construction of biologically-inspired materials. These materials are commonly assembled using the droplet interface bilayer (DIB) technique, adhering droplets together into a network of lipid membranes. DIB structures may be functionalized to generate conductive pathways by enhancing the permeability of pre-selected membranes, a strategy inspired by nature.
View Article and Find Full Text PDF