Background: Rigorous preclinical testing of soft tissue fillers has been lacking. No animal model has emerged as an accepted standard to evaluate tissue filler longevity.
Objective: To validate a small animal model to compare soft tissue filler degradation and tissue reaction.
Soft tissue reconstruction often requires multiple surgical procedures that can result in scars and disfiguration. Facial soft tissue reconstruction represents a clinical challenge because even subtle deformities can severely affect an individual's social and psychological function. We therefore developed a biosynthetic soft tissue replacement composed of poly(ethylene glycol) (PEG) and hyaluronic acid (HA) that can be injected and photocrosslinked in situ with transdermal light exposure.
View Article and Find Full Text PDFOCT3/4 is a POU domain transcription factor that is critical for maintenance of pluripotency and self-renewal by embryonic stem (ES) cells and cells of the early mammalian embryo. It has been demonstrated to bind and regulate a number of genes, often in conjunction with the transcription factors SOX2 and NANOG. In an effort to further understand this regulatory network, chromatin immunoprecipitation was used to prepare a library of DNA segments specifically bound by OCT3/4 in undifferentiated mouse ES (mES) cell chromatin.
View Article and Find Full Text PDFGNAS is a complex gene that through use of alternative first exons encodes signaling proteins Galpha(s) and XLalphas plus neurosecretory protein NESP55. Tissue-specific expression of these proteins is regulated through reciprocal genomic imprinting in fully differentiated and developed tissue. Mutations in GNAS account for several human disorders, including McCune-Albright syndrome and Albright hereditary osteodystrophy, and further knowledge of GNAS imprinting may provide insights into variable phenotypes of these disorders.
View Article and Find Full Text PDFType 1 diabetes mellitus subjects millions to a daily burden of disease management, life threatening hypoglycemia and long-term complications such as retinopathy, nephropathy, heart disease, and stroke. Cell transplantation therapies providing a glucose-regulated supply of insulin have been implemented clinically, but are limited by safety, efficacy and supply considerations. Stem cells promise a plentiful and flexible source of cells for transplantation therapies.
View Article and Find Full Text PDFX inactivation--the mammalian method of X chromosome dosage compensation--is extremely stable in human somatic cells; only fetal germ cells have a developmental program to reverse the process. The human placenta, at term, differs from other somatic tissues, since it has the ability to reverse the X-inactivation program. To determine whether reversal can be induced at other stages of placental development, we examined earlier placental specimens using a cell-hybridization assay.
View Article and Find Full Text PDF